Hwk Check

$$\theta_1 = 11 - 1.107 = 116.60$$

$$\theta_2 = 2\pi - 1.107 = 360 - 63.4$$

= 5.19 rd. = 296.6°

$$9c_1$$
 $\frac{1}{2}$ $\sec(x) = \frac{1}{2}$

$$\Rightarrow$$
 $\cos(x) = 1$

6.6 Quadratic Trigonometric Equations

Before moving on to Quadratic Trigonometric Equations, we need to consider a mind stretching problem, because it's good stretch from time to time.

Example 6.6.1

Solve $\sin\left(\frac{3x}{2}\right) = -\frac{\sqrt{3}}{2}$ exactly on $x \in [0, 2\pi]$

Don't be afraid of the 3! (though it does give one some concern...)

Consider a statel

of f(x) = sin (32)

Note: fizi= sin (32)

has a period of

 $\frac{\partial^2 x}{\partial x} = \frac{\partial^2 x}{\partial x$

P= 25

"32" is in Q3 or Q4

$$3x = \frac{4\pi}{3}$$
, $S_{\frac{\pi}{3}}$

$$\Rightarrow \chi = \frac{4\pi}{9}, \frac{5\pi}{9}$$

jadd = period

$$x = \frac{4\pi}{9}, \frac{5\pi}{9}, \frac{10\pi}{9}, \frac{16\pi}{9}, \frac{12\pi}{9}$$

12 degrees

From your text: Pg. 436 #4: Solve, to the nearest degree, for $0^{\circ} \le \theta \le 360^{\circ}$

b)
$$\cos^2(\theta) = 1$$
 We need to fine

 $\Rightarrow \cos(\theta) = \pm 1$

$$\theta = 0,360$$
 $\theta = 18$

f)
$$2\sin^2(\theta) = 1$$

$$Sin^2(\theta) = \frac{1}{2}$$

$$Sin(\theta) = \pm \frac{1}{\sqrt{2}}$$

$$Sin(\theta) = \pm \frac{1$$

From your text: Pg. 436 #5: Solve for
$$0^{\circ} \le x \le 360^{\circ}$$

b) $\left(\sin(x)\right) \cos(x) - 1 = 0$

$$a \cdot b = 0$$

$$d) \left(\cos(x) \right) \left(2\sin(x) - \sqrt{3} \right) = 0$$

$$\Rightarrow$$
 $(3/2)=0$

$$x = 90^{\circ}, 270^{\circ}$$

$$x = 90^{\circ}, 270^{\circ}$$

$$-1 - x = (00^{\circ}, 120^{\circ})$$

From your text: Pg. 436 #6: Solve for $0 \le x \le 2\pi$

d)
$$(2\cos(x)-1)(2\sin(x)+\sqrt{3})=0$$

or
$$2\sin(a) + \sqrt{3} = 0$$

$$Sim(x) = -\frac{\sqrt{3}}{2}$$

$$Cos(x) = \frac{1}{2}$$

Example 6.6.5

From your text: Pg. 436 #7: Solve for $0 \le \theta \le 2\pi$ to the nearest hundredth (if necessary).

a)
$$2\cos^2(\theta) + \cos(\theta) - 1 = 0$$

$$(2\cos(\theta)-1)(\cos(\theta)+1)=0$$

$$\Rightarrow$$
 $\cos(\theta) = \frac{1}{z}$

$$\Rightarrow \cos(\theta) = \frac{1}{2} \left(\cos(\theta) + 1\right) = 0$$

$$\Rightarrow \cos(\theta) = \frac{1}{2} \left(\cos(\theta) = -1\right) \left(\text{slie sty disc}\right)$$

$$\theta = \frac{17}{3}, \frac{5\pi}{3}, \frac{9}{1} = \pi$$

$$e) 3\tan^{2}(\theta) - 2\tan(\theta) = 1$$

$$\theta = \frac{\pi}{3}$$
, $5\pi 3$ $\theta = \pi$
e) $3\tan^2(\theta) - 2\tan(\theta) = 1$

$$(3\tan(\theta) + 1)(\tan(\theta) - 1) = 0$$

$$ta(\theta) = -\frac{1}{3}$$
 or $tan(\theta) = 1$

157

Example 6.6.6 (decimals are between the sixes!)

From your text: Pg. 436 #8: Solve for $x \in [0, 2\pi]$

a)
$$\sec(x) \cdot \csc(x) - 2\csc(x) = 0$$

№.

N = 13, II

c)
$$2\sin(x)\cdot\sec(x)-2\sqrt{3}\sin(x)=0$$

$$2 \sin(2) \left(\sec(x - \sqrt{3}) = 0 \right)$$

$$2 \sin(x) = 0$$

$$5 \ln(x) = 0$$

$$\Rightarrow \sin(x) = 0$$

$$\Rightarrow \cos(x) = \frac{1}{\sqrt{3}}$$

$$\Rightarrow x = \cos^{-1}\left(\frac{1}{\sqrt{3}}\right) = 0.9e$$

$$\phi = \frac{1}{3}$$

- · > > > 0,0.96,T,5.33, 2F

From your text: Pg. 437 #9: Solve for $x \in [0, 2\pi]$. Round to two decimal places.

a)
$$5\cos(2x) - \cos(x) + 3 = 0$$

=>
$$5(2(x^2-1))-(x(x)+3)=$$

=
$$\int (\int \cos(x_1 + 2)(2\cos(x_1 - 1)) = 0$$

$$(2)(2) = -\frac{2}{5}$$
 or (-0.4) or (-0.4) = $\frac{1}{3}$, $\frac{5\pi}{3}$

or
$$Cos(x) = \frac{1}{2}$$

$$=) \quad \supset C = \frac{11}{3}, \quad \frac{5\pi}{3}$$

$$\sum_{n=1}^{2\pi-1.98} \frac{1}{3}, 1.98, 4.30, \frac{5\pi}{3}.$$

Class/Homework for Section 6.6

Pg. 436 – 437 #4ade, 5acef, 6ac, 7 – 9