TH@TD MHF4U - Fall 2013

MHF4U: Chapter 8 Practice Quiz

The Questions below are intended as practice for the quiz. The actual quiz will contain questions similar to those below in terms of difficulty level.

- 1. If $f(x) = \cos^2 x$ and $g(x) = \sin^2 x$, what is $(f+g)(\frac{\pi}{16})$?
- 2. If $f(x) = \log x$ and $g(x) = 2^x$, what is (g f)(10)?
- 3. If $f(x) = \frac{x}{6}$ and $g(x) = \frac{x}{9}$, for what value of x does (f + g)(x) = 1? Give your answer as an improper fraction reduced to lowest terms.
- 4. In the graph shown, what is (g f)(4)?

- 5. If $f(x) = \log (10 x)$ and $g(x) = \log (x 10)$, what is the domain of the function (f g)(x)?
- 6. Suppose $f(x) = \sin x$ and $g(x) = \cos x$. What is the amplitude of the graph of the function $(f \times g)(x)$? Give your answer as a fraction. (Hint: trig identity for a sine double angle...)
- 7. If $f = \{(-10, 1), (-1, -1), (10, 0), (11, 7)\}$ and $g = \{(-1, -1), (0, 10), (1, -10), (7, 11)\}$, what is the domain of $(f \times g)(x)$? What is the domain of $(g \circ f)(x)$?
- 8. Suppose $f(x) = \frac{2}{x}$ and g(x) = 5x 15. The graph of the function $(f \circ g)(x)$ has a vertical asymptote at what value of x?
- 9. If $f(x) = \log x 4$ and $g(x) = \frac{1}{x+4}$, for what value(s) of x is g(f(x)) undefined?
- 10. Suppose that the function f has a domain of $\{x \in \mathbf{R} \mid x \ge -14\}$ and that the function g has a domain of $\{x \in \mathbf{R} \mid x \le -14\}$, and suppose g(-12) = 0. What is the domain of the function (g + f)(x)? What is the domain of $\left(\frac{f}{g}\right)(x)$?

- 11. If $f(x) = \frac{x^3}{2}$, what is $(f \circ f)(-4)$?
- 12. The graphs of f(x) and g(x) are shown. What is g(f(4))?

- 13. Given $f(x) = \sqrt{x-1}$ and $g(x) = \log(x-1)$, determine $D_{f \circ g}$ and $D_{g \circ f}$.
- 14. Suppose $f(x) = \cos x \sin x$ and $g(x) = \cos x + \sin x$. Explain why the graph of $(f \times g)(x)$ is equivalent to the graph of $h(x) = \cos x$ after it has been horizontally compressed by a factor of $\frac{1}{2}$.

MHF4U: Chapter 8 Practice Quiz Answer Section

SHORT ANSWER

1. ANS:

1

PTS: 1 REF: Thinking OBJ: 9.2 - Combining Two Functions: Sums and Differences

2. ANS:

1023

PTS: 1 REF: Knowledge and Understanding

OBJ: 9.2 - Combining Two Functions: Sums and Differences

3. ANS:

 $\frac{18}{5}$

PTS: 1 REF: Thinking OBJ: 9.2 - Combining Two Functions: Sums and Differences

4. ANS:

0

PTS: 1 REF: Application OBJ: 9.2 - Combining Two Functions: Sums and Differences

5. ANS:

The domain is empty

PTS: 1 REF: Thinking OBJ: 9.2 - Combining Two Functions: Sums and Differences

6. ANS:

 $\frac{1}{2}$

PTS: 1 REF: Application OBJ: 9.3 - Combining Two Functions: Products

7. ANS:

$$D_{f\times g}=\{-1\}$$

$$D_{f \circ g} = \{-1, 0, 1, 7\}$$

$$D_{g \circ f} = \{-10, -1, 10, 11\}$$

PTS: 1 REF: Knowledge and Understanding

OBJ: 9.3 - Combining Two Functions: Products

8. ANS:

3

PTS: 1 REF: Thinking OBJ: 9.5 - Composition of Functions

9. ANS:

$$x = 1 \text{ or } x \le 0$$

PTS: 1

REF: Thinking

OBJ: 9.5 - Composition of Functions

10. ANS:

$$D_{g+f} = [-14,-11]$$

 $D_{f/g} = [-14,-12) \cup (-12,-11]$

PTS: 1

REF: Knowledge and Understanding

OBJ: 9.2 - Combining Two Functions: Sums and Differences

11. ANS:

-16384

PTS: 1

REF: Knowledge and Understanding

OBJ: 9.5 - Composition of Functions

12. ANS:

-4

PTS: 1

REF: Application OBJ: 9.5 - Composition of Functions

13. ANS:

$$D_{f \circ g} = (11, \infty)$$

$$D_{g\circ f}=(2,\infty)$$

PTS: 1

PROBLEM

14. ANS:

Since $f(x) = \cos x - \sin x$ and $g(x) = \cos x + \sin x$, $(f \times g)(x) = (\cos x - \sin x)(\cos x + \sin x) = \cos^2 x - \sin^2 x$. Since $\cos^2 x - \sin^2 x = \cos 2x$, and since the graph of $h(x) = \cos 2x$ is equivalent to the graph of $h(x) = \cos x$ after it has been horizontally compressed by a factor of $\frac{1}{2}$, the graph of $(f \times g)(x)$ is also equivalent to the graph of $h(x) = \cos x$ after it has been horizontally compressed by a factor of $\frac{1}{2}$.

PTS: 1

REF: Communication

OBJ: 9.3 - Combining Two Functions: Products