The time has arrived. Havanced Fins Final Lesson.

9.3 Instantaneous Rate of Change – The IROC (part 2)

The Difference Quotient

ROC

Suppose we wish to calculate the Instantaneous Rate of Change of some function, f(x), at x = 2. Last day we saw three things:

1) IROX = the slope of a tangent to f(2) at a (number) given domain value.
2) We cound calculate the slope of a tangent.

3) We can estimate the value of the IROC with the ALOC (secan) slape if the interval for the ALOC is Rather than using a "centered interval" approach, we now consider the so-called

Difference Quotient (which can be much more useful than the centered interval approach).

Consider the sketch:

$$M_{\text{Sec}} = \frac{f(2+h) - f(2)}{(2+h) - 2} = \frac{f(2+h) - f(2)}{h}$$
 203

rstand that
$$IROC \sim AROC = m_{\text{sec}} = \begin{cases} (2 \text{ th}) - \int_{1}^{1} (2) \\ h \end{cases} \quad \text{for small h}$$

Define the difference quotient. In general, if we wish to approximate the IROC of f(x) at some (general) domain value x = a,

$$IROC \sim AROC = \frac{f(a+h) - f(a)}{h}$$
, for small h

Note: "h" can be either positive or negative. Consider the sketch:

Example 9.3.1

Given $s(t) = 2t^2 - 3t - 5$, determine a difference quotient which will estimate the IROC of s(t) at t = a. Use that difference quotient to estimate the IROC at t = 3 using h = 0.0001.

$$\frac{S(a+h) - S(a)}{h}$$
for $a=3$, $h=0.0\infty1$

$$|Roc \sim \frac{S(3.0\infty1) - S(3)}{0.0001}$$

$$= \left[\left(2(3.0001)^{\frac{1}{2}} - 3(3.0001) - 5 \right) - \left(2(3)^{\frac{1}{2}} - 3(3) - 5 \right) \right]$$

$$0.0001$$

Example 9.3.2

Consider the water-balloon problem from Example 9.2.1. The water-balloon "flies" according to the function $s(t) = -3(t-1)^2 + 12$. Estimate the instantaneous velocity (the IROC) of the balloon when it hits the ground (at t = 3 sec).

Note: we cannot use

2 centered interval

approach (Mara is

no domain post +=3)

Note further: we must use a negative value for L

Let
$$h = -0.0001$$

$$|Roc \sim S(3 - 0.0001) - S(3)$$

- 0. 000 1

= -11.9997

... The bolloon hik the ground at approximately
-12 m/sec at t= 3 sec

Class/Homework

Determine an estimate for the IROC of the given function at the indicated domain value using a difference quotient. Use h = 0.001 for your estimation.

a)
$$f(x) = x^2 - 3x + 1$$
 at $x = 2$

b)
$$h(t) = 2^t - 3$$
 at $t = 0$ IROC ~ 0.693

c)
$$g(x) = \sin(x)$$
 at $x = \pi$

IROC ~ -1

d)
$$s(t) = \frac{t+1}{t-2}$$
 at $t = 3$

e)
$$g(x) = x^3 + 2$$
 at $x = 3$ IROC ~ 27