Unit 4 - Using Equations to Solve Word Problems

Working with formulas

Section 7.9 Pages 368-370 What is a formula? Common Formulas (**Area, Volume**)
Rewriting formulas to isolate one variable (get x by itself)

Classwork: P369 - 1, 2, 3, 4, 9, 10, 12 **Homework: Pg369** - 5, 6, 7, 8, 11, 13, 14

Notes:

A MAMERATICAL PALE OR RELATIONSHIP EXPRESSED WITH LETTURES OR SYMBOLES.

A = lu V = lush n, sn0; = n2 sn0R

Classwork: Pg. 369

- **1.** For the formula A = lw,
- a) find A if l = 8 cm and w = 5 cm

A= lm W= A = 40 m² 10 m = 4 m

c) find l if $A = 238 \text{ m}^2$ and w = 14 m

= 17 m

- 2) Assume $\pi = 3.14$. For the formula $C = 2\pi r$,
- a) find C if r = 10 cm

- 3) For the formula $A = \frac{1}{2}bh$,
- a) find A if b = 6 cm and h = 8 cm

c) find b if $A = 61.5 \text{ m}^2$ and h = 20.5 m

b) find r if C = 628 cm

b) find *h* if $A = 40 \text{ cm}^2$ and b = 4 cm

$$A = \frac{1}{2}bh$$

$$A = 0.5bh$$

$$2A = bh$$

$$\frac{2A}{b} = h$$

$$\frac{2(40)}{4} = h$$

- **4.** For the formula P = 2(l + w),
- a) find P if l = 9 m and w = 6 m

Solve each formula for the indicated variable.

9.
$$E = mc^2$$
 for m

12. Water resistance Whales, sharks, and dolphins have shapes that minimize water resistance. The ideal shape for minimum water resistance is a torpedo shape, with a width that is one quarter of the length. The following equations show how the width, w, of a blue whale, a shark, or a dolphin is related to its length, l.

Blue Whale
$$w = 0.21l$$

Shark $w = 0.26l$
Dolphin $w = 0.25l$

- a) About how wide is a shark that is 18 m long?
- **b)** The blue whale is the world's largest mammal. Is a 30-m long blue whale wider than your classroom?

b) find w if P = 60 m and l = 16 m

10
$$A = \frac{1}{2}h(a+b)$$
 for b

b)
$$l = 30 \text{ m} < 6.3 \text{ m}$$

 $w = 0.71 (30)$