Advanced Functions
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Course Notes

Unit 4 - Rational Functions,

Equations and Inequalities

We are learning to
« sketch the graphs of simple ratienal functions
 solve rational equations and inequalities with and without tech
« apply the techniques and concepts to solve problems involving rational
models
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Unit 4 — Rational Functions, Equations and

Inequalities

Contents with suggested problems from the Nelson Textbook (Chapter 5)

4.1 Introduction to Rational Functions and Asymptotes
Pg. 262 #1 -3

4.2 Graphs of Rational Functions
Pg. 272 #1, 2 (Don’t use any tables of values!), 4 — 6, 9, 10

4.4 Solving Rational Equations
Pg. 285 - 287 #2,5 — 7def, 9,12, 13

4.5 Solving Rational Inequalities
Pg. 295-297 #1, 3,4 - 6 (def), 9, 11



4.1 Rational Functions, Domain and Asymptotes

Learning Goal: We are learning to identify the asymptotes of rational functions.

Definition 4.1.1
A Rational Function is of the form
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Domain

Definition 4.1.2

Given a rational function f(x)= % , then the natural domain of f(x) is given by
q(x
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Example 4.1.1
x’—4

Determine the natural domain of f(x)=
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Asymptotes
There are 3 possible types of asymptotes:
ff" verhcal r[\rQ t«)/
CewaBon X = #
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1) Vertical Asymptotes
2) Horizontal Asymptotes

3) Oblique Asymptotes
__/4}.1 67061/'12"1 "S U:,_ry-,x ,,_b
(%)

A rational function f(x)= T MIGHT have a V.A. when ¢(x) =0, but there may be a hole

q(x
discontinuity instead. A quick bit of algebra will dispense the mystery. /‘I//

Vertical Asymptotes

Example 4.1.2 [

Determine the domain, and V.A., or hole discontinuities for:
5x
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x+3
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b) h(x) =
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Horizontal Asymptotes

Here we are concerned with 7”{, E/VD .Ja@ ‘zoz v;()u@ C)€ j—t (b.}-,zymg Qﬁ(}fd‘\.

p(x)

i.e. We are asking, given a rational function f(x)= —), how is f(x) behaving as
x

X — too,
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Now, since p(x) and g(x) are both polynomials, they have an order (degree). We must consider

three possible situations regarding their order:

2o, hoHan
1) Order of p(x) > Order of g(x)
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2) Order of numerator = Order of denominator
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e.g. Determine the horizontal asymptote of g(x) = ———?’—;—x
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3) Order of numerator p(x) < Order of denominator ¢g(x)

X —5x+6

eg f(x)= 7

Oblique Asymptotes

These occur when 1h€ oder o He '75? & EMCTL_Y OA/E
Yreader thon e oder of He  hothm

e f0=ETEE Q-iz— Hos an  O.A
o i

With Oblique Asymptotes we are still dealing with €4, Ve \'l‘l\/?w@

O.A. have the fg)rrn y =mx+ b (shocking, I know!) The question we have to face is this:

How do we find the line representing the O.A.?
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Same. eacwnf’ \e
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Example 4.1.3

Determine the equations of all asymptotes, and any hole discontinuities for:
x+2 ~Doder )

WO T2 soder 2 o - -
‘ § VA | X= -]
%‘D; ’M-Z Q H‘),e! ==
() (¥+2) H.A./ 9= 0O i
o = ) O'A‘[ N /A
AH :
(A =25

b) g #=55
Gony = SN 2xts) VA [x=-3, x=3

(x¢3)( X ’§> Hole | A/A

O. A /\///4'



) hx) = uA, | x=-3
i) oo Hole | N/A
a0 I H A | VA
) 5 T 0.A | y=x-3
Y= X3

Comot Ve Yorh = H, 4 add 0.4

Example 4.1.4
Determine an equation for a function with a vertical asymptote at x=-3,and a

horizontal asymptote at y =0. X+3 fnenom
b Honn biyoér
‘FZK) = i OP 9&) = 371(2/2& + 1, 2o
X3 K | .

(x+3 — XX
Example 4.1.5 ) C X S/X )
Determine an equation for a function with a hole discontinuity at x=3.

(dramcn doch- 6& (4 ,3>

_—

fexy = (x-3)(x*5h 1)
| (x-3) (2x 318y —20)

Success Criteria:
o [ can identify a hole when there is a common factor between p(x) and g(x)
I can identify a vertical asymptote as the zeros of g(x)
I can identify a horizontal asymptote by studying the degrees of p(x) and g(x)
I can identify an oblique asymptote when the degree of p(x) is exactly 1 greater than g(x)
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4.2 Graphs of Rational Functions

Learning Goal: We are learning to sketch the graphs of rational functions.
. Note: In Advanced Functions we will only
. consider rational functions of the form
ax+b
f(x)=

cx+d

—————r T

Rational Functions of the form f(x)= il will have:

ex+
’ &
1) One Vertical Asymptote
Cxrd=0
d

s— ———
-—

C
2) One Zero (unless €1 = © ( ro varulle i r\x)merajﬂ‘)

O:OX+ —axty ,;x:—%

Cx#0
3) Functio‘nal Intercept [ ) +) L.,
/{Y\ > a(o b
ethen X =0 “ c(o) +9 9 O ( e

4) A Horizontal Asymptote

OPHMﬂ.‘L ka‘:_ccl OPHUV‘I?Z \dzo ('lh"‘ Q:O)

5) These functions will always be either
A’)wvs D’\CJZ&S% OR A—‘L,,JQ7§ a eafas /\lﬂj‘
Mean by NO  turn ho Pornts




Functional Behaviour Near A Vertical Asymptote

There are FOUR possible functional behaviours near a V.A.:

y
#2 1
H A /
Cluse b
H. A
Vj

e

For functions of the form f(x) = ax+2 we will see behaviours [\ \CC @ @"J
ox+ 3

The questions is, how do we know which?

We need to analyze the function near the V.A.
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We need to become familiar with some Notation.

Consider some rational function with a sketch of its graph which looks like:

p >.ZC7 oo ===

Example 4.2.1

Determine the functional behaviour of f(x)= 2x+1

\If "+r '\5 x: 3 )
Peprouc From VePt Agproes fom iy

near its V.A.

X224 fgo.qe) = —698 =301 Fmor = 702

y=3.001 F(3.00) = 7002
X=2.999 fer.qq) = 6175

. i ‘g b/
" yethm Smaller S gty biper

S, s XD 37, oy —== So,as 223, foo 219



We now have the tools to sketch some graphs!

Example 4.2.2
Sketch the graph of the given function. State the domain, range, intervals of
increase/decrease and where the function is positive and negative.

2x+1
-1

Op: ZXGK | » # 1§
< 65‘
qr oy R Sienl §#25

a)f(x)=—

,F(,Q 1< O¢créag 17\3 oN

("m) lDU (‘/ °°>
(@
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VA= X="2 D@gxéfk))(#“’%
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A Y T3 Ksiéj@)ék[%)¢%%

?
3
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l

’
Goo 70 On (<= MG =)
Iy €O on (-)_5)
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Example 4.2.3

Consider question #9 on page 274:

whad7s pe valve OF P Iavestmen’
afk— € yeaz ?
~  _ I5(2) +1S
f(’é) B 2
=22 S

15¢+25

I(t) =

o £ 27500

What-is He lee otr brotie?

. em mm o m g wr ae AR mm e
L IRERRSIPRS I P U S R

£=0.5 I(as) - Is(os) RS
o.5
= £s
o~ %6500
Tt is an asymplike ot =0
[oes Ang malce Spnse ?
Ao, te vidre P =0 <o be

H€ onigind  ameust saveste).

Ts He Conchion crccomds nea— €207

pol A (5o

I[(;) - 0

As fime pasces, whit™ il e valet of fle invespmed cgpoach’
Iﬂa)o) = IM{‘ - 1S, 015 E(loecm) = S, oolS

[ 0CO

Success Criteria:

Hpraches $ 150,

e [ can identify the horizontal asymptote as %

e [ can identify the vertical asymptote as —%

e [ can identify the y-intercept as %

e [ can identify the x-intercept as —g
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4.4 Solving Rational Equations

Learning Goal: We are learning to solve rational equations. Think rationally!

Solving a Rational Equation is VERY MUCH like solving a Polynomial Equation. Thus, this stuff
is so much fun it should be illegal. But it isn’t illegal unless you break a rule of algebra. Math
Safe!

KEY (this is a major key for you music buffs) ’
Multiplying by the Multiplicative Inverse of the Common Denominator
is wonderful to use WHEN YOU HAVE something like: .

RATIONAL, + RATIONAL, =RATIONAL, '.

|

g

3 _ i 3 CD. s OYxXx-)

c—

g A2 % 2
X2 X5 1Y 32

ot < Ho ) ¢ B
2x(3) =2(xODH(xHs) + x(x-D(3)

bx = 8(rD) (xS + 3x(x%-2)

C dlve nonrm.my
Make Sure To Keep RESTRICTION! 0" Xmn Mind

Meng, that FESIchors (D Expad
Canntbve Solubuns, @ et “she =0
o, x 7 C (@ So\wc
X # 0O
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Example 4.4.1

aySolve = Cross vuAply  (Ths s Pe vesolk of 0w
Ve fechen
i9x =y Car ke Jcﬁv
TEET:
x =S Mo restachons |
c

s, CD B

b) Solve ——=%= RESTRICTIONS
) 40
1S3/ 1\ _ISx/S% \hpr C X
H-()="F
(¢ — w\v,Nlﬂxv.nwxﬁNv
e - 25x% = 6X
O = 2k 6x - 1S

00es npy— Guchor, Auedibic  Fomild

1
X = .\,ro .M /MWNIJDD

\\.\Ilu!!l
Za

- (o g1

T 2(x%)
M%. WFEI..W—)\N\WN
Y =-0.Q ad x=0.66




¢) Solve §+i =2

x x+1 RESTRIClTIOI\éj L,C.D', ')([K-H)
’ 7 XS/ Y __x(\cﬂ)(z) -1,
/X(w>(;(>+ ((yﬁ) _
YF) + fx = Zi‘(xﬁ)
2xr3d A4 HX = Zx 12X
O = Zxt-§x~3
S 0= Zx* -br 3% =3
-5 i oy :.-—,l . 3
6 o= 7 x(x-3)+1(x 3) Ry z =
o =(x HXX"S)
d) Solve le_o x+i—x5 > RESTRICTIONS co. x(x -7_)
N &2
sofery 1)) wen
o + Y2 =
O+ Mx -8 = S/X
2 <~

T
WQJ’H, X =2 15« (CS AN |
<o ) 70 g()((/k()ﬂﬁ,
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2z
L1 §— = X
2,

|

O - (e rpsix2) @)
(w2)s + (%2

Q= (- *oit - +h) (- x_)

s+ O= (5- & h ) (2-K)

gz~ %

Q - 3 h

= )

o 4 8 \
o \2- O hl|Z

X[72—_¥
Q= O+ Xz=s*h

2 O= 0178727 17
Qi+ 2h-22 = . h

- h

Ot @2 )b = (o34, O= Oh+ Xp8 = XJ]

O+ Xz~ *h= CXF 42 .
- XS Xh9 &
09— oL+ ¥ = o S
"l"zx

Q9 — G sl = @S — (2> K2tx) %9

EZ+X)(Z—X)_Z—3C = Z+x—x9 aatos (@

09 S1 S

2. -4 X 52 1)@ %)
('2—3()(24)() 'a>7)



Example 4.4.2
From your Text: Pg. 285 #10

The Turtledove Chocolate factory has two chocolate machines. Machine A takes m minutes to
fill a case with chocolates, and machine B takes m + 10 minutes to fill a case. Working together,
the two machines take 15 min to fill a case. Approximately how long does each machine take to

Wcﬁnaca:;uem ’ 4 cusee Ghed
" B OF miagltes
A [ case R: | cas®
#/)—a#;:;wt’s MO mnEs
@)D Lep (e
7ogeter. ( LI rem Lest: m#©

M MHO |S”

1S (mHo) + 1S =W t10)

*

igm +150 f"f—”’) F
O =m

7

p.uF vse QF

ResulF. M =2¢.8

Success Criteria:

\/\2 M EF10m
——ZOm"

mn 710

e 1§ rmivles

SO
£ Machine A
s 258 m»

/«’\erta\'le_ %
(S 368 min

¢ [ canrecognize that the zeros of a rational function are the zeros of the numerator

e I can solve rational equations by multiplying each term by the lowest common
denominator, then solving the resulting polynomial equation

¢ [ canidentify inadmissible solutions based on the context of the problem
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4.5 Solving Rational Inequalities

Learning Goal: We are learning to solve rational inequalities using algebraic and graphical
approaches.

The jov, wonder and peace these bring is reallv quite amazing
N A <> A &

x—-2 > .'1# . "t:‘
e.g. Solve 5 = 0 Note: For Rational Inequalities, with a variable

in the denominator, you CANNOT
X<2. 20 multiply by the multiplicative inverse of
the common denominator!!!!
X2 2

Why? T pe facks Cx+3> s

Example 4.5.1 Negah ve, CrosS MUl Mpl«y%?
Solve 2220 Wwold Change e e chu,
3 . af He mepndih, .
ResY -

We solve by using an Interval Chart )
X¥F -3 - -
# So X =
For the intervals, we split (—oo,oo) at 2{(} zeros (where the numerator is zero), and all

restrictions (where the denominator is zero) of the (SINGLE) rational expression. Keep in
mind that it may take a good deal of algebraic manipulation to get a SINGLE rational
expression...

R R
Tnkerds: | (==, -2)|(3, 2> | (2, =)
Tesk-valves - Y / O 3

X~ - |- | *

S B + *

rr{aﬁo ® &) (D sy

XL 2o when XK€ ("ﬁ/%)u[z/w) 19
!

£ p——

X¥3
Qestachon, S0 >



Example 4.5.2

1 <5-5'
x+5

Solve

| (xr<)
L _=co
xs 109
j - S/X - Zg < O
Xts

_,S';( _Z(" <O
Xts

_ Dnkead [(__.,@/ = (-5, -4.8) ) (—4.86, QQ>)

gesyihion -

DO NOT CROSS MULTIPLY (or else)

e Get everything on one side

e Simplify into a single Rational
Expression using a common
denominator

e Interval Chart it up

2eros - X:_Z_igh/q—y

-

X #-§

Tv. | =4

-4.9

1| 4

—

xrs') —

(OuHo{ =

/. ._|_<5 o X é(/o@/—5">\)(—-b}.gjc>e>

X+
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Example 4.5.3

Solve -4 -:3?6'- 2 20 FACTORED FORM I8 YOUR FRIEND
X2 —
' = — X==
(X-)‘Z) (*31) >0 Zeros: XK =—2, ]
()(__DD()H"‘Q Reshichos K=Y, XA Y

R R \ R R
Tkt | (= ,—0) | (=4, -2) | (=2, -N) (=1, 9| (4, )

Test vales!| & -3 )-—Lf o
B _ N N
(CM; - | -+ )L*“
G | = |~ - |

IR {/ r

ZRICASHCIRS

X OEBx 72 , ‘
Re—16 208 xe(n, DY & -1 u(4,=)

e

\@‘Y T x4 |
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Example 4.5.4
—¥
<x

Solve
x+2

(xt2)

32 X <0
X+ l(x{—a)

&
3- XZ-2X z 0 )

X+2 e
L\)'X?’*-ZX ¥3 é@/; 2) Zeas. ; X
VX ’ Restr, X7 -2

xC+26 =3 >0

Ate R_ s Higr®

( (X+3>(K‘\> >0

(x+1)
K, R {

T lerecds (Mﬂ/ -3> (’Z/"‘Zf) (’Z/ ’) (\/ oC))}
oy —y “2s | O 2 /
é&-l’%) — 1 [ + ,.,_ /
G| =~ | T |- |
(K+2) - — ( + ) 7 /
DR

o | o / O ?I J

X+2

L 32 x Grxé&l3-2)v(2,-)

L
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Example 4.5.5
From your Text: Pg. 296 #6a
Using Graphing Tech
x+3 > X 1
x—4 x+6

Solve

Note: There are TWO methods, both
of which require a FUNCTION
(let f(x)=... returns)

1) Get a Single Function (on one side of the
inequality)

zﬁ) _/_";' >0
X X6

x€(-6,-Qu(4,~)

2) Use Two Functions (one for each side)

ld-fxy = __)E_t} G ':_A_-i
% - x74

St s £ A0

~\

x€(-6-1] U (4,)

Success Criteria:

e [ can recognize that an inequality has many possible intervals of solutions

e I can solve an inequality algebraically, using an interval chart

e [ can solve an inequality graphically
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