Math 9 - I	Unit 7:	Coordinate	Geometry
------------	---------	------------	----------

Lesson #2: Graphing Linear Relationships

Date: May 13

Learning Goal: We are learning to create a table of values from a linear equation and use that table to create a list of ordered pairs that can be plotted on a coordinate grid.

Once again, we will begin with some new vocabulary:

independent Variable

Le a variable which ack as the input value in a relationship.

Let it is the variable used to determine other information.

Let the x-coordinate, x-axis

Dependent Variable

Let a variable which changes based on an input value.

Let the information you are trying to determine.

Let y-coordinate y-axis

Linear Relationship

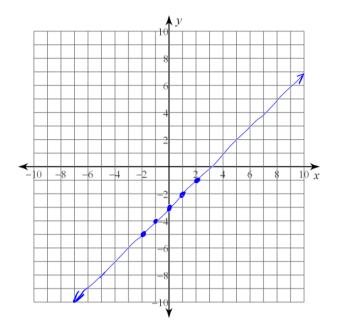
Linear Relationship

A relationship between the dependent tindependent variables which results in a straight line.

Table of Values

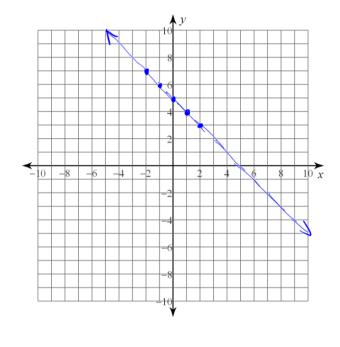
A table/chart used to organize the linear relationship.

The goal for today's lesson is to graph a linear relationship using this algorithm:

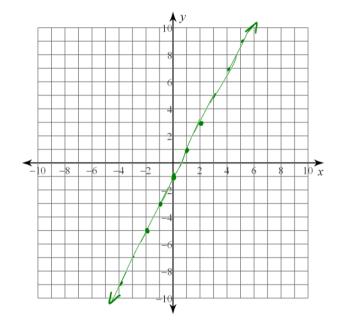

- 1. Rearrange the equation so it is dependent variable = everything else (or y=____) y=mx+b
- 2. Create a Table of Values and choose an appropriate set of x-coordinates.
- 3. Use that set and calculate the corresponding y-coordinates.
- 4. Create the point (x,y).
- 5. Plot the points.
- 6. Draw a line through the points (do not just connect them).

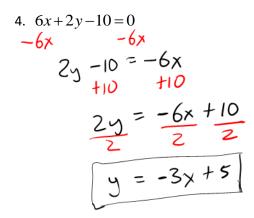
Your table of values should look like this:

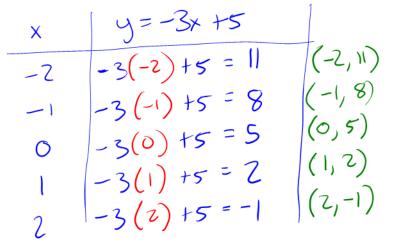
X	У	(x,y)
Set of x-coordinates	Corresponding y-coordinates	Set of points to plot

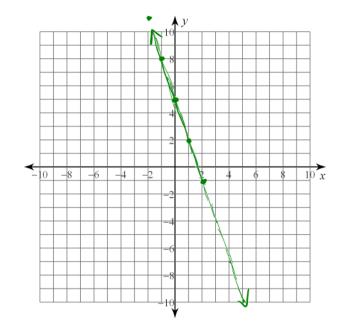

Examples:

1.
$$y = x - 3$$

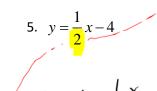

* If y is positive, leave it alone.

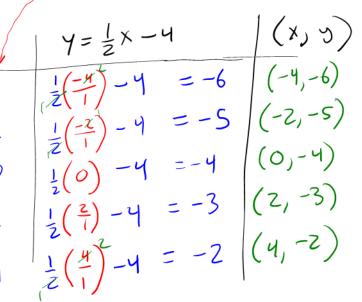

2.
$$x+y=5$$



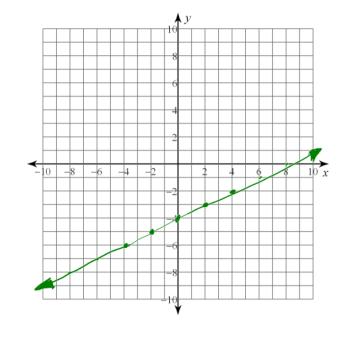

*If y is negative, more it! AND more the other Stuff away.

3.
$$2x-y=1$$
 $4y + y$
 $2x = 1 + y$
 $-1 - 1$
 $2x - 1 = y$
 $0R$
 $y = 2x - 1$





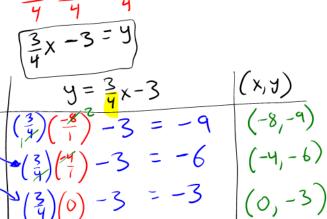
denominator. Use these as input valves.



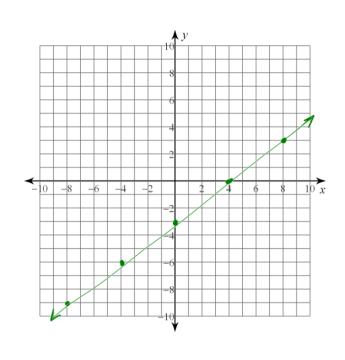
$$\frac{4}{2} \left[\frac{1}{2} \right] - 4 = -5 \left[(-2, -5) \right]$$

$$\frac{1}{2}(0) - 4 = -4 (0, -4)$$

$$\frac{1}{4} \left(\frac{4}{1} \right) - 4 = -2 \left(4, -2 \right)$$


6.
$$3x-4y=12$$

 $+4y$ $+4y$
 $3x = 12 + 4y$


$$3x = 12 + 4y$$

-12 -12

$$\frac{3x-12}{4}=\frac{4y}{4}$$

$$\begin{bmatrix} \frac{3}{4}x - 3 = 4 \end{bmatrix}$$

$$y = \frac{3}{4}x - 3$$
 (x,y)
 $(-8)^2 - 3 = -9$ (-8,-9)

Success Criteria:

- I can rearrange a linear equation so that the "dependent variable = everything else"
- I can create a table of values and choose an appropriate set of x coordinates.
- I can use those x-coordinates to generate a set of y-coordinates
- I can create ordered pairs from the sets of x and y coordinates and graph my ordered pairs on a coordinate grid