Mid-Chapter Review

1. Calculate the product of each radical expression and its corresponding conjugate.

a.
$$\sqrt{5} - \sqrt{2}$$
 b. $3\sqrt{5} + 2\sqrt{2}$ c. $9 + 2\sqrt{5}$ d. $3\sqrt{5} - 2\sqrt{10}$
2. Rationalize each denominator.

- a. $\frac{6 + \sqrt{2}}{\sqrt{3}}$ c. $\frac{5}{\sqrt{7} 4}$ e. $\frac{5\sqrt{3}}{2\sqrt{3} + 4}$ b. $\frac{2\sqrt{3} + 4}{\sqrt{3}}$ d. $\frac{2\sqrt{3}}{\sqrt{3} 2}$ f. $\frac{3\sqrt{2}}{2\sqrt{3} 5}$
- 3. Rationalize each numerator.

a.
$$\frac{\sqrt{2}}{5}$$
 c. $\frac{\sqrt{7}-4}{5}$ e. $\frac{\sqrt{3}-\sqrt{7}}{4}$
b. $\frac{\sqrt{3}}{6+\sqrt{2}}$ d. $\frac{2\sqrt{3}-5}{3\sqrt{2}}$ f. $\frac{2\sqrt{3}+\sqrt{7}}{5}$

- 4. Determine the equation of the line described by the given information.
 - a. slope $-\frac{2}{3}$, passing through point (0, 6)
 - b. passing through points (2, 7) and (6, 11)
 - c. parallel to y = 4x 6, passing through point (2, 6)
 - d. perpendicular to y = -5x + 3, passing through point (-1, -2)
- 5. Find the slope of *PQ*, in simplified form, given P(1, -1) and Q(1 + h, f(1 + h)), where $f(x) = -x^2$.
- 6. Consider the function $y = x^2 2x 2$.
 - a. Copy and complete the following tables of values. *P* and *Q* are points on the graph of f(x).

Р	Q	Slope of Line PQ
(-1, 1)	(-2, 6)	$\frac{-5}{1} = -5$
(-1, 1)	(-1.5, 3.25)	
(-1, 1)	(-1.1,)	
(-1, 1)	(-1.01,)	
(-1, 1)	(-1.001,)	

Р	Q		Slope of Line <i>PQ</i>
(-1, 1)	(0,))	
(-1, 1)	(-0.5,)	
(-1, 1)	(-0.9,)	
(-1, 1)	(-0.99,)	
(-1, 1)	(-0.999,)	

- b. Use your results for part a to approximate the slope of the tangent to the graph of f(x) at point *P*.
- c. Calculate the slope of the secant where the x-coordinate of Q is -1 + h.
- d. Use your results for part c to calculate the slope of the tangent to the graph of f(x) at point *P*.
- e. Compare your answers for parts b and d.
- 7. Calculate the slope of the tangent to each curve at the given point or value of *x*.

a.
$$f(x) = x^2 + 3x - 5, (-3, -5)$$

b. $y = \frac{1}{x}, x = \frac{1}{3}$
c. $y = \frac{4}{x - 2}, (6, 1)$
d. $f(x) = \sqrt{x + 4}, x = 5$

- 8. The function s(t) = 6t(t + 1) describes the distance (in kilometres) that a car has travelled after a time *t* (in hours), for $0 \le t \le 6$.
 - a. Calculate the average velocity of the car during the following intervals.
 - i. from t = 2 to t = 3
 - ii. from t = 2 to t = 2.1
 - iii. from t = 2 to t = 2.01
 - b. Use your results for part a to approximate the instantaneous velocity of the car when t = 2.
 - c. Find the average velocity of the car from t = 2 to t = 2 + h.
 - d. Use your results for part c to find the velocity when t = 2.
- 9. Calculate the instantaneous rate of change of f(x) with respect to x at the given value of x.

a.
$$f(x) = 5 - x^2, x = 2$$

b. $f(x) = \frac{3}{x}, x = \frac{1}{2}$

- 10. An oil tank is being drained for cleaning. After t minutes, there are V litres of oil left in the tank, where $V(t) = 50(30 t)^2$, $0 \le t \le 30$.
 - a. Calculate the average rate of change in volume during the first 20 min.
 - b. Calculate the rate of change in volume at time t = 20.
- 11. Find the equation of the tangent at the given value of *x*.
 - a. $y = x^{2} + x 3, x = 4$ b. $y = 2x^{2} - 7, x = -2$ c. $f(x) = 3x^{2} + 2x - 5, x = -1$ d. $f(x) = 5x^{2} - 8x + 3, x = 1$
- 12. Find the equation of the tangent to the graph of the function at the given value of x.

a.
$$f(x) = \frac{x}{x+3}, x = -5$$

b. $f(x) = \frac{2x+5}{5x-1}, x = -1$