The notation $\lim_{x\to a} f(x) = L$ is read "the limit of f(x) as x approaches a equals L" and means that the value of f(x) can be made arbitrarily close to L by choosing x sufficiently close to a (but not equal to a). But $\lim_{x\to a} f(x)$ exists if and only if the limiting value from the left equals the limiting value from the right. We shall use this definition to evaluate some limits.

Note: This is an intuitive explanation of the limit of a function. A more precise definition using inequalities is important for advanced work but is not necessary for our purposes.

INVESTIGATION 1 Determine the limit of $y = x^2 - 1$, as *x* approaches 2.

A. Copy and complete the table of values.

x	1	1.5	1.9	1.99	1.999	2	2.001	2.01	2.1	2.5	3
$y=x^2-1$											

- B. As x approaches 2 from the left, starting at x = 1, what is the approximate value of y?
- C. As x approaches 2 from the right, starting at x = 3, what is the approximate value of y?
- D. Graph $y = x^2 1$ using graphing software or graph paper.
- E. Using arrows, illustrate that, as we choose a value of x that is closer and closer to x = 2, the value of y gets closer and closer to a value of 3.
- F. Explain why the limit of $y = x^2 1$ exists as x approaches 2, and give its approximate value.

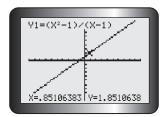
EXAMPLE 1

Determine $\lim_{x\to 1} \frac{x^2 - 1}{x - 1}$ by graphing.

Solution

On a graphing calculator, display the graph of $f(x) = \frac{x^2 - 1}{x - 1}, x \neq 1$.

The graph shown on your calculator is a line (f(x) = x + 1), whereas it should be a line with point (1, 2) deleted $(f(x) = x + 1, x \neq 1)$. The WINDOW used is $X_{\min} = -10, X_{\max} = 10, X_{scl} = 1$, and similarly for Y. Use the TRACE function to find X = 0.85106383, Y = 1.8510638 and X = 1.0638298, Y = 2.0638298.



Click ZOOM; select 4:ZDecimal, ENTER. Now, the graph of $f(x) = \frac{x^2 - 1}{x - 1}$ is displayed as a straight line with point (1, 2) deleted. The WINDOW has new values, too.

Use the TRACE function to find X = 0.9, Y = 1.9; X = 1, Y has no value given; and X = 1.1, Y = 2.1.



We can estimate $\lim_{x\to 1} f(x)$. As *x* approaches 1 from the left, written as " $x \to 1^{-}$ ", we observe that f(x) approaches the value 2 from below. As *x* approaches 1 from the right, written as $x \to 1^{+}$, f(x) approaches the value 2 from above.

We say that the limit at x = 1 exists only if the value approached from the left is the same as the value approached from the right. From this investigation, we conclude that $\lim_{x\to 1} \frac{x^2 - 1}{x - 1} = 2$.

EXAMPLE 2 Selecting a table of values strategy to evaluate a limit

Determine $\lim_{x\to 1} \frac{x^2 - 1}{x - 1}$ by using a table.

Solution

We select sequences of numbers for $x \to 1^-$ and $x \to 1^+$.

x approaches 1 from the left \rightarrow								$\leftarrow x$ approaches 1 from the right						
x	0	0.5	0.9	0.99	0.999	1		1.001	1.01	1.1	1.5	2		
$\frac{x^2-1}{x-1}$	1	1.5	1.9	1.99	1.999	undefined		2.001	2.01	2.1	2.5	3		
$f(x) = \frac{x^2 - 1}{x - 1}$ approaches 2 from below $\rightarrow \qquad \leftarrow f(x) = \frac{x^2 - 1}{x - 1}$ approaches 2 from above										above				

This pattern of numbers suggests that $\lim_{x\to 1} \frac{x^2 - 1}{x - 1} = 2$, as we found when graphing in Example 1.

Selecting a graphing strategy to evaluate a limit

Sketch the graph of the piecewise function:

Tech Support For help graphing piecewise functions on

EXAMPLE 3

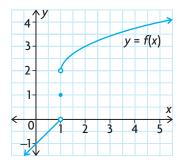
a graphing calculator, see Technology Appendix p. 607.

 $f(x) = \begin{cases} x - 1, & \text{if } x < 1 \\ 1, & \text{if } x = 1 \\ 2 + \sqrt{x - 1}, & \text{if } x > 1 \end{cases}$

Determine $\lim_{x \to 1} f(x)$.

Solution

The graph of the function *f* consists of the line y = x - 1 for x < 1, the point (1, 1) and the square root function $y = 2 + \sqrt{x - 1}$ for x > 1. From the graph of f(x), observe that the limit of f(x) as $x \to 1$ depends on whether x < 1 or x > 1. As $x \to 1^-$, f(x) approaches the value of 0 from below. We write this as $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x - 1) = 0.$



Similarly, as $x \to 1^+$, f(x) approaches the value 2 from above. We write this as $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \left(2 + \sqrt{x - 1} \right) = 2.$ (This is the same when x = 1 is substituted into the expression $2 + \sqrt{x-1}$.) These two limits are referred to as one-sided

limits because, in each case, only values of x on one side of x = 1 are considered. How-ever, the one-sided limits are unequal— $\lim_{x \to 1^{-}} f(x) = 0 \neq 2 = \lim_{x \to 1^{+}} f(x)$ —or more briefly, $\lim_{x \to 1^{-}} f(x) \neq \lim_{x \to 1^{+}} f(x)$. This implies that f(x) does not approach a single value as $x \to 1$. We say "the limit of f(x) as $x \to 1$ does not exist." and write " $\lim_{x \to 1} f(x)$ does not exist." This may be surprising, since the function f(x) was defined at x = 1—that is, f(1) = 1. We can now summarize the ideas introduced in these examples.

Limits and Their Existence

We say that the number *L* is the limit of a function y = f(x) as *x* approaches the value *a*, written as $\lim_{x \to a} f(x) = L$, if $\lim_{x \to a^-} f(x) = L = \lim_{x \to a^+} f(x)$. Otherwise, $\lim_{x \to a} f(x)$ does not exist.

IN SUMMARY

Key Idea

• The limit of a function y = f(x) at x = a is written as $\lim_{x \to a} f(x) = L$, which means that f(x) approaches the value *L* as *x* approaches the value *a* from both the left and right side.

Need to Know

- lim *f*(*x*) may exist even if *f*(*a*) is not defined.
- $\lim_{x\to a} f(x)$ can be equal to f(a). In this case, the graph of f(x) passes through the point (a, f(a)).
- If $\lim_{x\to a^-} f(x) = L$ and $\lim_{x\to a^+} f(x) = L$, then *L* is the limit of f(x) as *x* approaches *a*, that is $\lim_{x\to a} f(x) = L$.

Exercise 1.4

PART A

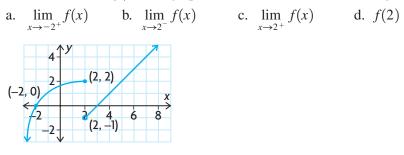
- 1. What do you think is the appropriate limit of each sequence?
 - a. 0.7, 0.72, 0.727, 0.7272, . . .
 - b. 3, 3.1, 3.14, 3.141, 3.1415, 3.141 59, 3.141 592, . . .
- **c** 2. Explain a process for finding a limit.
 - 3. Write a concise description of the meaning of the following:
 - a. a right-sided limit b. a left-sided limit c. a (two-sided) limit

- 4. Calculate each limit.
 - a. $\lim_{x \to -5} x$ b. $\lim_{x \to 3} (x + 7)$ c. $\lim_{x \to 10} x^2$ d. $\lim_{x \to -2} (4 - 3x^2)$ f. $\lim_{x \to 3} 2^x$ f. $\lim_{x \to 3} 2^x$

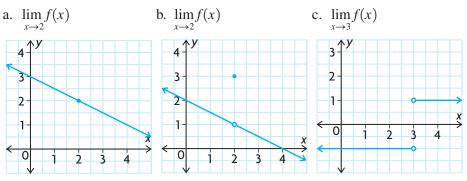
5. Determine
$$\lim_{x \to 4} f(x)$$
, where $f(x) = \begin{cases} -1, & \text{if } x \neq 4 \\ -1, & \text{if } x = 4 \end{cases}$

PART B

6. For the function f(x) in the graph below, determine the following:



K 7. Use the graph to find the limit, if it exists.



- 8. Evaluate each limit. a. $\lim_{x \to -1} (9 - x^2)$ b. $\lim_{x \to 0} \sqrt{\frac{x + 20}{2x + 5}}$ c. $\lim_{x \to 5} \sqrt{x - 1}$
- 9. Find $\lim_{x\to 2} (x^2 + 1)$, and illustrate your result with a graph indicating the limiting value.
- 10. Evaluate each limit. If the limit does not exist, explain why.

a.
$$\lim_{x \to 0^+} x^4$$

b. $\lim_{x \to 2^-} (x^2 - 4)$
c. $\lim_{x \to 3^-} (x^2 - 4)$
d. $\lim_{x \to 1^+} \frac{1}{x - 3}$
e. $\lim_{x \to 3^+} \frac{1}{x + 2}$
f. $\lim_{x \to 3} \frac{1}{x - 3}$

11. For each function, sketch the graph of the function. Determine the indicated limit if it exists.

a.
$$f(x) = \begin{cases} x + 2, \text{ if } x < -1, \lim_{x \to -1} f(x) \\ -x + 2, \text{ if } x \ge -1, x \to -1 \end{cases}$$

b. $f(x) = \begin{cases} -x + 4, \text{ if } x \le 2, \lim_{x \to 2} f(x) \\ -2x + 6, \text{ if } x > 2, x \to 2 \end{cases}$
c. $f(x) = \begin{cases} 4x, \text{ if } x \ge \frac{1}{2}; \lim_{x \to \frac{1}{2}} f(x) \\ \frac{1}{x}, \text{ if } x < \frac{1}{2}; x \to \frac{1}{2} \end{cases}$
d. $f(x) = \begin{cases} 1, \text{ if } x < -0.5 \\ x^2 - 0.25, \text{ if } x \ge -0.5; x \to -0.5 \end{cases}$

Α 12. Sketch the graph of any function that satisfies the given conditions.

a.
$$f(1) = 1$$
, $\lim_{x \to 1^+} f(x) = 3$, $\lim_{x \to 1^-} f(x) = 2$
b. $f(2) = 1$, $\lim_{x \to 2} f(x) = 0$
c. $f(x) = 1$, if $x < 1$ and $\lim_{x \to 1^+} f(x) = 2$
d. $f(3) = 0$, $\lim_{x \to 3^+} f(x) = 0$

13. Let f(x) = mx + b, where *m* and *b* are constants. If $\lim_{x \to 1} f(x) = -2$ and $\lim_{x \to -1} f(x) = 4$, find *m* and *b*.

PART C

14. Determine the real values of *a*, *b*, and *c* for the quadratic function
$$f(x) = ax^2 + bx + c$$
, $a \neq 0$, that satisfy the conditions $f(0) = 0$, $\lim_{x \to 1} f(x) = 5$, and $\lim_{x \to -2} f(x) = 8$.

15. The fish population, in thousands, in a lake at time t, in years, is modelled by the following function:

$$p(t) = \begin{cases} 3 + \frac{1}{12}t^2, & \text{if } 0 \le t \le 6\\ 2 + \frac{1}{18}t^2, & \text{if } 6 < t \le 12 \end{cases}$$

This function describes a sudden change in the population at time t = 6, due to a chemical spill.

- a. Sketch the graph of p(t).
- b. Evaluate lim p(t) and lim p(t).
 c. Determine how many fish were killed by the spill.
- d. At what time did the population recover to the level before the spill?