- 1. Consider the graph of the function $f(x) = 5x^2 8x$.
 - a. Find the slope of the secant that joins the points on the graph given by x = -2 and x = 3.
 - b. Determine the average rate of change as x changes from -1 to 4.
 - c. Find an equation for the line that is tangent to the graph of the function at x = 1.
- 2. Calculate the slope of the tangent to the given function at the given point or value of *x*.

a.
$$f(x) = \frac{3}{x+1}$$
, $P(2, 1)$
b. $g(x) = \sqrt{x+2}$, $P(-1, 1)$
c. $h(x) = \frac{2}{\sqrt{x+5}}$, $P\left(4, \frac{2}{3}\right)$
d. $f(x) = \frac{5}{x-2}$, $P\left(4, \frac{5}{2}\right)$

3. Calculate the slope of the graph of $f(x) = \begin{cases} 4 - x^2, & \text{if } x \le 1 \\ 2x + 1, & \text{if } x > 1 \end{cases}$ at each of the

following points:

- a. P(-1, 3)
- b. P(2, 5)
- 4. The height, in metres, of an object that has fallen from a height of 180 m is given by the position function $s(t) = -5t^2 + 180$, where $t \ge 0$ and t is in seconds.
 - a. Find the average velocity during each of the first two seconds.
 - b. Find the velocity of the object when t = 4.
 - c. At what velocity will the object hit the ground?
- 5. After t minutes of growth, a certain bacterial culture has a mass, in grams, of $M(t) = t^2$.
 - a. How much does the bacterial culture grow during the time $3 \le t \le 3.01$?
 - b. What is its average rate of growth during the time interval $3 \le t \le 3.01$?
 - c. What is its rate of growth when t = 3?
- 6. It is estimated that, t years from now, the amount of waste accumulated Q, in tonnes, will be $Q(t) = 10^4(t^2 + 15t + 70), 0 \le t \le 10$.
 - a. How much waste has been accumulated up to now?
 - b. What will be the average rate of change in this quantity over the next three years?

- c. What is the present rate of change in this quantity?
- d. When will the rate of change reach 3.0×10^5 per year?
- 7. The electrical power p(t), in kilowatts, being used by a household as a function of time *t*, in hours, is modelled by a graph where t = 0 corresponds to 06:00. The graph indicates peak use at 08:00 and a power failure between 09:00 and 10:00.

- a. Determine $\lim_{t \to 2} p(t)$.
- b. Determine $\lim_{t \to 4^+} p(t)$ and $\lim_{t \to 4^-} p(t)$.
- c. For what values of t is p(t) discontinuous?
- 8. Sketch a graph of any function that satisfies the given conditions.

a.
$$\lim_{x \to -1} f(x) = 0.5$$
, f is discontinuous at $x = -1$

- b. f(x) = -4 if x < 3, f is an increasing function when x > 3, $\lim_{x \to 3^+} f(x) = 1$
- 9. a. Sketch the graph of the following function:

$$f(x) = \begin{cases} x + 1, \text{ if } x < -1 \\ -x + 1, \text{ if } -1 \le x < 1 \\ x - 2, \text{ if } x > 1 \end{cases}$$

- b. Find all values at which the function is discontinuous.
- c. Find the limits at those values, if they exist.
- 10. Determine whether $f(x) = \frac{x^2 + 2x 8}{x + 4}$ is continuous at x = -4.
- 11. Consider the function $f(x) = \frac{2x-2}{x^2+x-2}$.
 - a. For what values of *x* is *f* discontinuous?
 - b. At each point where f is discontinuous, determine the limit of f(x), if it exists.

12. Use a graphing calculator to graph each function and estimate the limits, if they exist.

a.
$$f(x) = \frac{1}{x^2}, \lim_{x \to 0} f(x)$$

b. $g(x) = x(x - 5), \lim_{x \to 0} g(x)$
c. $h(x) = \frac{x^3 - 27}{x^2 - 9}, \lim_{x \to 4} h(x) \text{ and } \lim_{x \to -3} h(x)$

13. Copy and complete each table, and use your results to estimate the limit. Use a graphing calculator to graph the function to confirm your result.

a.
$$\lim_{x \to 2} \frac{x-2}{x^2 - x - 2}$$

x	1.9	1.99	1.999	2.001	2.01	2.1
$\frac{x-2}{x^2-x-2}$						

b.
$$\lim_{x \to 1} \frac{x-1}{x^2-1}$$

x	0.9	0.99	0.999	1.001	1.01	1.1
$\frac{x-1}{x^2-1}$						

14. Copy and complete the table, and use your results to estimate the limit. $\lim_{x \to 0} \frac{\sqrt{x+3} - \sqrt{3}}{x}$

x	-0.1	-0.01	-0.001	0.001	0.01	0.1
$\frac{\sqrt{x+3}-\sqrt{3}}{x}$						

Then determine the limit using an algebraic technique, and compare your answer with your estimate.

15. a. Copy and complete the table to approximate the limit of $f(x) = \frac{\sqrt{x+2}-2}{x-2}$ as $x \rightarrow 2$.

x	2.1	2.01	2.001	2.0001
$f(x)=\frac{\sqrt{x+2}-2}{x-2}$				

- b. Use a graphing calculator to graph f, and use the graph to approximate the limit.
- c. Use the technique of rationalizing the numerator to find $\lim_{x\to 2} \frac{\sqrt{x+2}-2}{x-2}$.

16. Evaluate the limit of each difference quotient. Interpret the limit as the slope of the tangent to a curve at a specific point.

a.
$$\lim_{h \to 0} \frac{(5+h)^2 - 25}{h}$$

b.
$$\lim_{h \to 0} \frac{\sqrt{4+h} - 2}{h}$$

c.
$$\lim_{h \to 0} \frac{\frac{1}{(4+h)} - \frac{1}{4}}{h}$$

17. Evaluate each limit using one of the algebraic methods discussed in this chapter, if the limit exists.

a.
$$\lim_{x \to -4} \frac{x^2 + 12x + 32}{x + 4}$$

b.
$$\lim_{x \to a} \frac{(x + 4a)^2 - 25a^2}{x - a}$$

c.
$$\lim_{x \to 0} \frac{\sqrt{x + 5} - \sqrt{5 - x}}{x}$$

d.
$$\lim_{x \to 2} \frac{x^2 - 4}{x^3 - 8}$$

e.
$$\lim_{x \to 4} \frac{4 - \sqrt{12 + x}}{x - 4}$$

f.
$$\lim_{x \to 0} \frac{1}{x} \left(\frac{1}{2 + x} - \frac{1}{2}\right)$$

18. Explain why the given limit does not exist.

a.
$$\lim_{x \to 3} \sqrt{x - 3}$$

b.
$$\lim_{x \to 2} \frac{x^2 - 4}{x^2 - 4x + 4}$$

c.
$$f(x) = \begin{cases} -5, \text{ if } x < 1\\ 2, \text{ if } x \ge 1 \end{cases}; \quad \inf_{x \to 1} f(x)$$

d.
$$\lim_{x \to 2} \frac{1}{\sqrt{x - 2}}$$

e.
$$\lim_{x \to 0} \frac{|x|}{x}$$

f.
$$f(x) = \begin{cases} 5x^2, \text{ if } x < -1\\ 2x + 1, \text{ if } x \ge -1 \end{cases}; \quad \lim_{x \to -1} f(x)$$

- 19. Determine the equation of the tangent to the curve of each function at the given value of x.
 - a. $y = -3x^{2} + 6x + 4$ where x = 1b. $y = x^{2} - x - 1$ where x = -2c. $f(x) = 6x^{3} - 3$ where x = -1d. $f(x) = -2x^{4}$ where x = 3
- 20. The estimated population of a bacteria colony is $P(t) = 20 + 61t + 3t^2$, where the population, *P*, is measured in thousands at *t* hours.
 - a. What is the estimated population of the colony at 8 h?
 - b. At what rate is the population changing at 8 h?