1. Explain when you need to use the chain rule.



- 2. The graphs of a function and its derivative are shown at the left. Label the graphs f and f', and write a short paragraph stating the criteria you used to make your selection.
- 3. Use the definition of the derivative to find  $\frac{d}{dx}(x x^2)$ .
- 4. Determine  $\frac{dy}{dx}$  for each of the following functions:
  - a.  $y = \frac{1}{3}x^3 3x^{-5} + 4\pi$ b.  $y = 6(2x - 9)^5$ c.  $y = \frac{2}{\sqrt{x}} + \frac{x}{\sqrt{3}} + 6\sqrt[3]{x}$ d.  $y = \left(\frac{x^2 + 6}{3x + 4}\right)^5$  (Leave your answer in a simplified factored form.) e.  $y = x^2\sqrt[3]{6x^2 - 7}$  (Simplify your answer.) f.  $y = \frac{4x^5 - 5x^4 + 6x - 2}{x^4}$  (Simplify your answer.)
- 5. Determine the slope of the tangent to the graph of  $y = (x^2 + 3x 2)(7 3x)$  at (1, 8).
- 6. Determine  $\frac{dy}{dx}$  at x = -2 for  $y = 3u^2 + 2u$  and  $u = \sqrt{x^2 + 5}$ .
- 7. Determine the equation of the tangent to  $y = (3x^{-2} 2x^3)^5$  at (1, 1).
- 8. The amount of pollution in a certain lake is  $P(t) = (t^{\frac{1}{4}} + 3)^3$ , where *t* is measured in years and *P* is measured in parts per million (ppm). At what rate is the amount of pollution changing after 16 years?
- 9. At what point on the curve  $y = x^4$  does the normal have a slope of 16?
- 10. Determine the points on the curve  $y = x^3 x^2 x + 1$  where the tangent is horizontal.
- 11. For what values of *a* and *b* will the parabola  $y = x^2 + ax + b$  be tangent to the curve  $y = x^3$  at point (1, 1)?