*Section 4.1***—Increasing and Decreasing Functions**

The graph of the quadratic function $f(x) = x^2$ is a parabola. If we imagine a particle moving along this parabola from left to right, we can see that, while the *x*-coordinates of the ordered pairs steadily increase, the *y*-coordinates of the ordered pairs along the particle's path first decrease and then increase. Determining the intervals in which a function increases and decreases is extremely useful for understanding the behaviour of the function. The following statements give a clear picture:

Intervals of Increase and Decrease

We say that a function *f is decreasing on an interval* if, for any value of $x_1 < x_2$ on the interval, $f(x_1) > f(x_2)$.

Similarly, we say that a function *f is increasing on an interval* if, for any value of $x_1 \leq x_2$ on the interval, $f(x_1) \leq f(x_2)$.

For the parabola with the equation $y = x^2$, the change from decreasing *y*-values to increasing *y*-values occurs at $(0, 0)$, the vertex of the parabola. The function $f(x) = x^2$ is decreasing on the interval $x < 0$ and is increasing on the interval $x > 0$.

If we examine tangents to the parabola anywhere on the interval where the *y*-values are decreasing (that is, on $x < 0$), we see that all of these tangents have negative slopes. Similarly, the slopes of tangents to the graph on the interval where the *y*-values are increasing are all positive.

For functions that are both continuous and differentiable, we can determine intervals of increasing and decreasing *y*-values using the derivative of the function. In the case of $y = x^2$, $\frac{dy}{dx} = 2x$. For $x < 0$, $\frac{dy}{dx} < 0$, and the slopes of the tangents are negative. The interval $x < 0$ corresponds to the decreasing portion of the graph of the parabola. For $x > 0$, $\frac{dy}{dx} > 0$, and the slopes of the tangents are positive on the interval where the graph is increasing.

We summarize this as follows: For a continuous and differentiable function, *f*, the function values (*y*-values) are increasing for all *x*-values where $f'(x) > 0$, and the function values (*y*-values) are decreasing for all *x*-values where $f'(x) < 0$.

EXAMPLE 1 Using the derivative to reason about intervals of increase and decrease

Use your calculator to graph the following functions. Use the graph to estimate the values of *x* for which the function values (*y*-values) are increasing, and the values of *x* for which the *y*-values are decreasing. Verify your estimates with an algebraic solution.

a.
$$
y = x^3 + 3x^2 - 2
$$
 b. $y = \frac{x}{x^2 + 1}$

Solution

a. Using a calculator, we obtain the graph of $y = x^3 + 3x^2 - 2$. Using the

 $TRACE$ key on the calculator, we estimate that the function values are increasing on $x < -2$, decreasing on $-2 < x < 0$, and increasing again on $x > 0$. To verify these estimates with an algebraic solution, we consider the slopes of the tangents.

The slope of a general tangent to the graph of $y = x^3 + 3x^2 - 2$ is given by $\frac{dy}{dx} = 3x^2 + 6x$. We first determine the values of *x* for which $\frac{dy}{dx} = 0$. These values tell us where the function has a **local maximum** or **local minimum** value. These are greatest and least values respectively of a function in relation to its neighbouring values.

Setting
$$
\frac{dy}{dx} = 0
$$
, we obtain $3x^2 + 6x = 0$
 $3x(x + 2) = 0$
 $x = 0, x = -2$

These values of *x* locate points on the graph where the slope of the tangent is zero (that is, where the tangent is horizontal).

Since this is a polynomial function it is continuous so $\frac{dy}{dx}$ is defined for all values of *x*. Because $\frac{dy}{dx} = 0$ only at $x = -2$ and $x = 0$, the derivative must be either positive or negative for all other values of *x*. We consider the intervals $x < -2$, $-2 < x < 0$, and $x > 0$. *dx*

So $y = x^3 + 3x^2 - 2$ is increasing on the intervals $x < -2$ and $x > 0$ and is decreasing on the interval $-2 < x < 0$.

b. Using a calculator, we obtain the graph of $y = \frac{x}{x^2 + 1}$. Using the **TRACE** key on the calculator, we estimate that the function values (*y*-values) are decreasing on $x < -1$, increasing on $-1 < x < 1$, and decreasing again on $x > 1$.

We analyze the intervals of increasing/decreasing *y*-values for the function by determining where $\frac{dy}{dx}$ is positive and where it is negative. *dx*

$$
y = \frac{x}{x^2 + 1}
$$
 (Express as a product)
\n
$$
= x(x^2 + 1)^{-1}
$$

\n
$$
\frac{dy}{dx} = 1(x^2 + 1)^{-1} + x(-1)(x^2 + 1)^{-2}(2x)
$$
 (Product and chain rules)
\n
$$
= \frac{1}{x^2 + 1} - \frac{2x^2}{(x^2 + 1)^2}
$$

\n
$$
= \frac{x^2 + 1 - 2x^2}{(x^2 + 1)^2}
$$

\n
$$
= \frac{-x^2 + 1}{(x^2 + 1)^2}
$$
 (Simplify)
\n
$$
= \frac{-x^2 + 1}{(x^2 + 1)^2}
$$

\nSetting $\frac{dy}{dx} = 0$, we obtain $\frac{-x^2 + 1}{(x^2 + 1)^2} = 0$
\n
$$
-x^2 + 1 = 0
$$

\n
$$
x^2 = 1
$$

\n
$$
x = 1 \text{ or } x = -1
$$
 (Solve)

These values of *x* locate the points on the graph where the slope of the tangent is 0. Since the denominator of this rational function can never be 0, this function is continuous so $\frac{dy}{dx}$ is defined for all values of *x*. Because $\frac{dy}{dx} = 0$ at $x = -1$ and $x = 1$, we consider the intervals $(-\infty, -1)$, $(-1, 1)$, and $(1, \infty)$.

Then $y = \frac{x}{x^2 + 1}$ is increasing on the interval $(-1, 1)$ and is decreasing on the intervals $(-\infty, -1)$ and $(1, \infty)$.

EXAMPLE 2 Graphing a function given the graph of the derivative

Consider the graph of $f'(x)$. Graph $f(x)$.

x y ł. *y = f*'(*x*) *y = f*(*x*) –8 –6 –4 –2 1 -2 -2 -1 -1

Solution

When the derivative, $f'(x)$, is positive, the graph of $f(x)$ is rising. When the derivative is negative, the graph is falling. In this example, the derivative changes sign from positive to negative at $x = -0.6$. This indicates that the graph of $f(x)$ changes from increasing to decreasing, resulting in a local maximum for this value of *x*. The derivative changes sign from negative to positive at $x = 2.9$, indicating the graph of $f(x)$ changes from decreasing to increasing resulting in a local minimum for this value of *x*.

One possible graph of $f(x)$ is shown.

IN SUMMARY

Key Ideas

- A function *f* is **increasing** on an interval if, for any value of $x_1 < x_2$ in the interval, $f(x_1) < f(x_2)$.
- A function *f* is **decreasing** on an interval if, for any value of $x_1 < x_2$ in the interval, $f(x_1) > f(x_2)$.

- For a function *f* that is continuous and differentiable on an interval *I*
	- $f(x)$ is **increasing** on *I* if $f'(x) > 0$ for all values of *x* in *I*
	- $f(x)$ is **decreasing** on *I* if $f'(x) < 0$ for all values of *x* in *I*

Need to Know

- A function increases on an interval if the graph rises from left to right.
- A function decreases on an interval if the graph falls from left to right.
- The slope of the tangent at a point on a section of a curve that is increasing is always positive.
- The slope of the tangent at a point on a section of a curve that is decreasing is always negative.

Exercise 4.1

PART A

C

1. Determine the points at which $f'(x) = 0$ for each of the following functions: a. $f(x) = x^3 + 6x^2 + 1$ c. $f(x) = x^3 + 6x^2 + 1$
 c. $f(x) = (2x - 1)^2(x^2 - 9)$ **K**

b.
$$
f(x) = \sqrt{x^2 + 4}
$$
 d.

$$
f(x) = \sqrt{x^2 + 4}
$$
 d. $f(x) = \frac{5x}{x^2 + 1}$

- 2. Explain how you would determine when a function is increasing or decreasing.
	- 3. For each of the following graphs, state
		- i. the intervals where the function is increasing
		- ii. the intervals where the function is decreasing
		- iii. the points where the tangent to the function is horizontal

- 4. Use a calculator to graph each of the following functions. Inspect the graph to estimate where the function is increasing and where it is decreasing. Verify your estimates with algebraic solutions.
	- a. $f(x) = x^3 + 3x^2 + 1$ b. $f(x) = x^5 - 5x^4 + 100$ e. c. $f(x) = x + \frac{1}{x}$ f. $f(x) = x + \frac{1}{x}$ **f**. $f(x) = x^4 + x^2 - 1$ *x* $f(x) = x^5 - 5x^4 + 100$ **e.** $f(x) = 3x^4 + 4x^3 - 12x^2$ $f(x) = x^3 + 3x^2 + 1$
d. $f(x) = \frac{x-1}{x^2 + 3}$

PART B

- 5. Suppose that *f* is a differentiable function with the derivative $f'(x) = (x - 1)(x + 2)(x + 3)$. Determine the values of *x* for which the function *f* is increasing and the values of *x* for which the function is decreasing.
- 6. Sketch a graph of a function that is differentiable on the interval $-2 \le x \le 5$ and that satisfies the following conditions: **A**
	- The graph of *f* passes through the points $(-1, 0)$ and $(2, 5)$.
	- The function *f* is decreasing on $-2 < x < -1$, increasing on $-1 < x < 2$, and decreasing again on $2 < x < 5$.
	- 7. Find constants *a*, *b*, and *c* such that the graph of $f(x) = x^3 + ax^2 + bx + c$ will increase to the point $(-3, 18)$, decrease to the point $(1, -14)$, and then continue increasing.
	- 8. Sketch a graph of a function *f* that is differentiable and that satisfies the following conditions:
		- $f'(x) > 0$, when $x < -5$
		- $f'(x) < 0$, when $-5 < x < 1$ and when $x > 1$
		- $f'(-5) = 0$ and $f'(1) = 0$
		- $f(-5) = 6$ and $f(1) = 2$
- 9. Each of the following graphs represents the derivative function $f'(x)$ of a function $f(x)$. Determine
	- i. the intervals where $f(x)$ is increasing
	- ii. the intervals where $f(x)$ is decreasing
	- iii. the *x*-coordinate for all local extrema of $f(x)$

Assuming that $f(0) = 2$, make a rough sketch of the graph of each function.

- 10. Use the derivative to show that the graph of the quadratic function $f(x) = ax^2 + bx + c, a > 0$, is decreasing on the interval $x < -\frac{b}{2a}$ and increasing on the interval $x > -\frac{b}{2a}$.
- 11. For $f(x) = x^4 32x + 4$, find where $f'(x) = 0$, the intervals on which the function increases and decreases, and all the local extrema. Use graphing technology to verify your results.
- 12. Sketch a graph of the function *g* that is differentiable on the interval $-2 \le x \le 5$, decreases on $0 \le x \le 3$, and increases elsewhere on the domain. The absolute maximum of g is 7, and the absolute minimum is -3 . The graph of *g* has local extrema at $(0, 4)$ and $(3, -1)$.

PART C

T

- 13. Let *f* and *g* be continuous and differentiable functions on the interval $a \leq x \leq b$. If f and g are both increasing on $a \leq x \leq b$, and if $f(x) > 0$ and $g(x) > 0$ on $a \le x \le b$, show that the product *fg* is also increasing on $a \leq x \leq b$.
	- 14. Let *f* and *g* be continuous and differentiable functions on the interval $a \le x \le b$. If *f* and *g* are both increasing on $a \le x \le b$, and if $f(x) < 0$ and $g(x) < 0$ on $a \le x \le b$, is the product *fg* increasing on $a \le x \le b$, decreasing, or neither?