In Chapter 3, you saw that the second derivative of a function has applications in problems involving velocity and acceleration or in general rates-of-change problems. Here we examine the use of the second derivative of a function in curve sketching.

INVESTIGATION 1 The purpose of this investigation is to examine the relationship between slopes of tangents and the second derivative of a function.

- A. Sketch the graph of $f(x) = x^2$.
- B. Determine $f'(x)$. Use $f'(x)$ to calculate the slope of the tangent to the curve at the points with the following *x*-coordinates: $x = -4, -3, -2, -1, 0, 1, 2, 3$, and 4. Sketch each of these tangents.
- C. Are these tangents above or below the graph of $y = f(x)$?
- D. Describe the change in the slopes as *x* increases.
- E. Determine $f''(x)$. How does the value of $f''(x)$ relate to the way in which the curve opens? How does the value of $f''(x)$ relate to the way $f'(x)$ changes as *x* increases?
- F. Repeat parts B, C, and D for the graph of $f(x) = -x^2$.
- G. How does the value of $f''(x)$ relate to the way in which the curve opens?

INVESTIGATION 2 The purpose of this investigation is to extend the results of Investigation 1 to other functions.

- A. Sketch the graph of $f(x) = x^3$.
- B. Determine all the values of *x* for which $f'(x) = 0$.
- C. Determine intervals on the domain of the function such that $f''(x) < 0$, $f''(x) = 0$, and $f''(x) > 0$.
- D. For values of *x* such that $f''(x) < 0$, how does the shape of the curve compare with your conclusions in Investigation 1?
- E. Repeat part D for values of *x* such that $f''(x) > 0$.
- F. What happens when $f''(x) = 0$?
- G. Using your observations from this investigation, sketch the graph of $y = x^3 - 12x$.

From these investigations, we can make a summary of the behaviour of the graphs.

Concavity and the Second Derivative

1. The graph of $y = f(x)$ is **concave up** on an interval $a \le x \le b$ in which the slopes of $f(x)$ are increasing. On this interval, $f''(x)$ exists and $f''(x) > 0$. The graph of the function is above the tangent at every point on the interval.

2. The graph of $y = f(x)$ is **concave down** on an interval $a \le x \le b$ in which the slopes of $f(x)$ are decreasing. On this interval, $f''(x)$ exists and $f''(x) < 0$. The graph of the function is below the tangent at every point on the interval.

- 3. If $y = f(x)$ has a critical point at $x = c$, with $f'(c) = 0$, then the behaviour of $f(x)$ at $\overline{x} = c$ can be analyzed through the use of the **second derivative test** by analyzing $f''(c)$, as follows:
	- a. The graph is concave up, and $x = c$ is the location of a local minimum value of the function, if $f''(c) > 0$.

b. The graph is concave down, and $x = c$ is the location of a local maximum value of the function, if $f''(c) < 0$.

- c. If $f''(c) = 0$, the nature of the critical point cannot be determined without further work.
- 4. A **point of inflection** occurs at $(c, f(c))$ on the graph of $y = f(x)$ if $f''(x)$ changes sign at $x = c$. That is, the curve changes from concave down to concave up, or vice versa.

5. All points of inflection on the graph of $y = f(x)$ must occur either where equals zero or where $\frac{d^2y}{dx^2}$ is undefined. *dx*2 *d*2*y dx*2

In the following examples, we will use these properties to sketch graphs of other functions.

EXAMPLE 1 Using the first and second derivatives to analyze a cubic function

Sketch the graph of $y = x^3 - 3x^2 - 9x + 10$.

Solution

 $\frac{dy}{dx} = 3x^2 - 6x - 9$

Setting $\frac{dy}{dx} = 0$, we obtain $x = 3$ or $x = -1$ Setting $\frac{d^2y}{dx^2} = 0$, we obtain $6x - 6 = 0$ or $x = 1$. $\frac{d^2y}{dx^2} = 6x - 6$ $3(x-3)(x+1) = 0$ $3(x^2 - 2x - 3) = 0$

Now determine the sign of $f''(x)$ in the intervals determined by $x = 1$.

Applying the second derivative test, at $x = 3$, we obtain the local minimum point, $(3, -17)$ and at $x = -1$, we obtain the local maximum point, $(-1, 15)$. The point of inflection occurs at $x = 1$ where $f(1) = -1$. The graph can now be sketched.

EXAMPLE 2 Using the first and second derivatives to analyze a quartic function Sketch the graph of $f(x) = x^4$.

Solution

The first and second derivatives of $f(x)$ are $f'(x) = 4x^3$ and $f''(x) = 12x^2$. Setting $f''(x) = 0$, we obtain $12x^2 = 0$ or $x = 0$

But $x = 0$ is also obtained from $f'(x) = 0$.

Now determine the sign of $f''(x)$ on the intervals determined by $x = 0$.

We conclude that the point $(0, 0)$ is *not* an inflection point because $f''(x)$ does not change sign at $x = 0$. However, since $x = 0$ is a critical number and $f'(x) < 0$ when $x < 0$ and $f'(x) > 0$ when $x > 0$, $(0, 0)$ is an absolute minimum.

EXAMPLE 3 Using the first and second derivatives to analyze a root function

Sketch the graph of the function $f(x) = x^{\frac{1}{3}}$.

Solution

The derivative of $f(x)$ is

$$
f'(x) = \frac{1}{3}x^{-\frac{2}{3}}
$$

$$
= \frac{1}{3x^{\frac{2}{3}}}
$$

Note that $f'(0)$ does not exist, so $x = 0$ is a critical number of $f(x)$. It is important to determine the behaviour of $f'(x)$ as $x \to 0$. Since $f'(x) > 0$ for all values of $x \neq 0$, and the denominator of $f'(x)$ is zero when $x = 0$, we have $\lim_{x\to 0} f'(x) = +\infty$. This means that there is a vertical tangent at $x = 0$. In addition, $f(x)$ is increasing for $x < 0$ and $x > 0$. As a result this graph has no local extrema. The second derivative of $f(x)$ is

$$
f''(x) = -\frac{2}{9}x^{-\frac{5}{3}}
$$

=
$$
-\frac{2}{9x^{\frac{5}{3}}}
$$

Since $x^{\frac{5}{3}} > 0$ if $x > 0$, and $x^{\frac{5}{3}} < 0$ if $x < 0$, we obtain the following table:

The graph has a point of inflection when $x = 0$, even though $f'(0)$ and $f''(0)$ do not exist. Note that the curve crosses its tangent at $x = 0$.

EXAMPLE 4 Reasoning about points of inflection

Determine any points of inflection on the graph of $f(x) = \frac{1}{x^2 + 3}$.

Solution

The derivative of $f(x) = \frac{1}{x^2 + 3} = (x^2 + 3)^{-1}$ is The second derivative is $f(x) = \frac{1}{x^2 + 3} = (x^2 + 3)^{-1}$ is $f'(x) = -2x(x^2 + 3)^{-2}$.

$$
f''(x) = -2(x^2 + 3)^{-2} + 4x(x^2 + 3)^{-3}(2x)
$$

=
$$
\frac{-2}{(x^2 + 3)^2} + \frac{8x^2}{(x^2 + 3)^3}
$$

=
$$
\frac{-2(x^2 + 3) + 8x^2}{(x^2 + 3)^3}
$$

$$
=\frac{6x^2-6}{(x^2+3)^3}
$$

Setting $f''(x) = 0$ gives $6x^2 - 6 = 0$ or $x = \pm 1$.

Determine the sign of $f''(x)$ on the intervals determined by $x = -1$ and $x = 1$.

Therefore, $\left(-1, \frac{1}{4}\right)$ and $\left(1, \frac{1}{4}\right)$ are points of inflection on the graph of $f(x)$.

IN SUMMARY

Key Ideas

- The graph of a function $f(x)$ is **concave up** on an interval if $f'(x)$ is increasing on the interval. The graph of a function $f(x)$ is **concave down** on an interval if $f'(x)$ is decreasing on the interval.
- A point of inflection is a point on the graph of $f(x)$ where the function changes from concave up to concave down, or vice versa. $f''(c) = 0$ or is undefined if $(c, f(c))$ is a point of inflection on the graph of $f(x)$.

Need to Know

- **Test for concavity:** If $f(x)$ is a differentiable function whose second derivative exists on an open interval *I*, then
	- the graph of $f(x)$ is concave up on *I* if $f''(x) > 0$ for all values of *x* in *I*
	- the graph of $f(x)$ is concave down on *I* if $f''(x) < 0$ for all values of *x* in *I*
- The second derivative test: Suppose that $f(x)$ is a function for which $f''(c) = 0$, and the second derivative of $f(x)$ exists on an interval containing *c*.
	- If $f''(c) > 0$, then $f(c)$ is a local minimum value.
	- If $f''(c) < 0$, then $f(c)$ is a local maximum value.
	- If $f''(c) = 0$, then the test fails. Use the first derivative test.

Exercise 4.4

PART A

1. For each function, state whether the value of the second derivative is positive or negative at each of points *A*, *B*, *C*, and *D*. **K**

2. Determine the critical points for each function, and use the second derivative test to decide if the point is a local maximum, a local minimum, or neither.

a.
$$
y = x^3 - 6x^2 - 15x + 10
$$

\nb. $y = \frac{25}{x^2 + 48}$
\nc. $s = t + t^{-1}$
\nd. $y = (x - 3)^3 + 8$

- 3. Determine the points of inflection for each function in question 2. Then conduct a test to determine the change of sign in the second derivative.
- 4. Determine the value of the second derivative at the value indicated. State whether the curve lies above or below the tangent at this point.

a.
$$
f(x) = 2x^3 - 10x + 3
$$
 at $x = 2$
\nb. $g(x) = x^2 - \frac{1}{x}$ at $x = -1$
\nc. $p(w) = \frac{w}{\sqrt{w^2 + 1}}$ at $w = 3$
\nd. $s(t) = \frac{2t}{t - 4}$ at $t = -2$

PART B

5. Each of the following graphs represents the second derivative, $f''(x)$, of a function $f(x)$:

 $f''(x)$ *is a linear function.*

 $f''(x)$ is a quadratic function.

For each of the graphs above, answer the following questions:

i. On which intervals is the graph of $f(x)$ concave up? On which intervals is the graph concave down?

- ii. List the *x*-coordinates of all the points of inflection.
- iii. Make a rough sketch of a possible graph of $f(x)$, assuming that $f(0) = 2$.
- 6. Describe how you would use the second derivative to determine a local minimum or maximum. **C**
	- 7. In the algorithm for curve sketching in Section 4.3, reword step 4 to include the use of the second derivative to test for local minimum or maximum values.
	- 8. For each of the following functions,
		- i. determine any points of inflection
		- ii. use the results of part i, along with the revised algorithm, to sketch each function.

a.
$$
f(x) = x^4 + 4x
$$

b. $g(w) = \frac{4w^2 - 3}{w^3}$

- 9. Sketch the graph of a function with the following properties: **A**
	- $f'(x) > 0$ when $x < 2$ and when $2 < x < 5$
	- $f'(x) < 0$ when $x > 5$
	- $f'(2) = 0$ and $f'(5) = 0$
	- $f''(x) < 0$ when $x < 2$ and when $4 < x < 7$
	- $f''(x) > 0$ when $2 < x < 4$ and when $x > 7$
	- $f(0) = -4$
	- 10. Find constants *a*, *b*, and *c* such that the function $f(x) = ax^3 + bx^2 + c$ will have a local extremum at $(2, 11)$ and a point of inflection at $(1, 5)$. Sketch the graph of $y = f(x)$.

PART C

- 11. Find the value of the constant *b* such that the function $f(x) = \sqrt{x+1} + \frac{b}{x}$ has a point of inflection at $x = 3$.
- 12. Show that the graph of $f(x) = ax^4 + bx^3$ has two points of inflection. Show that the *x*-coordinate of one of these points lies midway between the *x*-intercepts. **T**
	- 13. a. Use the algorithm for curve sketching to sketch the function $y = \frac{x^3 - 2x^2 + 4x}{x^2 - 4}$ $\frac{x^2-4x}{x^2-4}$.
		- b. Explain why it is difficult to determine the oblique asymptote using a graphing calculator.
	- 14. Find the inflection points, if any exist, for the graph of $f(x) = (x c)^n$, for $n = 1, 2, 3$, and 4. What conclusion can you draw about the value of *n* and the existence of inflection points on the graph of f ?