Chapter 5 Test

- 1. Determine the derivative $\frac{dy}{dx}$ for each of the following:
 - a. $y = e^{-2x^2}$ b. $y = 3^{x^2 + 3x}$ c. $y = \frac{e^{3x} + e^{-3x}}{2}$ d. $y = 2 \sin x - 3 \cos 5x$ e. $y = \sin^3(x^2)$ f. $y = \tan \sqrt{1 - x}$
- 2. Determine the equation of the tangent to the curve defined by $y = 2e^{3x}$ that is parallel to the line defined by -6x + y = 2.
- 3. Determine the equation of the tangent to $y = e^x + \sin x$ at (0, 1).
- 4. The velocity of a certain particle that moves in a straight line under the influence of forces is given by $v(t) = 10e^{-kt}$, where k is a positive constant and v(t) is in centimetres per second.
 - a. Show that the acceleration of the particle is proportional to a constant multiple of its velocity. Explain what is happening to the particle.
 - b. What is the initial velocity of the particle?
 - c. At what time is the velocity equal to half the initial velocity? What is the acceleration at this time?
- 5. Determine f''(x).

a.
$$f(x) = \cos^2 x$$

b. $f(x) = \cos x \cot x$

- 6. Determine the absolute extreme values of $f(x) = \sin^2 x$, where $x \in [0, \pi]$.
- 7. Calculate the slope of the tangent line that passes through $y = 5^x$, where x = 2. Express your answer to two decimal places.
- 8. Determine all the maximum and minimum values of $y = xe^x + 3e^x$.
- 9. $f(x) = 2 \cos x \sin 2x$ where $x \in [-\pi, \pi]$
 - a. Determine all critical number for f(x) on the given interval.
 - b. Determine the intervals where f(x) is increasing and where it is decreasing.
 - c. Determine all local maximum and minimum values of f(x) on the given interval.
 - d. Use the information you found above to sketch the curve.