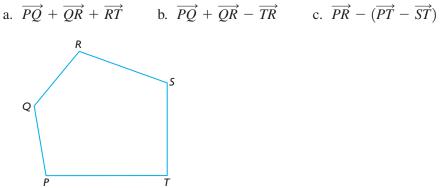
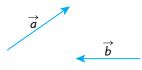

1. ABCD is a parallelogram, and $|\overrightarrow{PD}| = |\overrightarrow{DA}|$.


- a. Determine which vectors (if any) are equal to \overrightarrow{AB} , \overrightarrow{BA} , \overrightarrow{AD} , \overrightarrow{CB} , and \overrightarrow{AP} .
- b. Explain why $\left| \overrightarrow{PD} \right| = \left| \overrightarrow{BC} \right|$.
- 2. The diagram below represents a rectangular prism. State a single vector equal to each of the following.


a.
$$\overrightarrow{RQ} + \overrightarrow{RS}$$

b. $\overrightarrow{RQ} + \overrightarrow{QV}$
c. $\overrightarrow{PW} + \overrightarrow{WS}$
e. $\overrightarrow{PW} - \overrightarrow{VP}$
d. $(\overrightarrow{RQ} + \overrightarrow{RS}) + \overrightarrow{VU}$
f. $\overrightarrow{PW} + \overrightarrow{WR} + \overrightarrow{RQ}$

- 3. Two vectors, \vec{a} and \vec{b} , have a common starting point with an angle of 120° between them. The vectors are such that $|\vec{a}| = 3$ and $|\vec{b}| = 4$.
 - a. Calculate $\left| \vec{a} + \vec{b} \right|$.
 - b. Calculate the angle between \vec{a} and $\vec{a} + \vec{b}$.
- 4. Determine all possible values for t if the length of the vector $\vec{x} = t\vec{y}$ is $4|\vec{y}|$.
- 5. *PQRS* is a quadrilateral where *A*, *B*, *C*, and *D* are the midpoints of *SP*, *PQ*, *QR*, and *RS*, respectively. Prove, using vector methods, that *ABCD* is a parallelogram.
- 6. Given that $|\vec{u}| = 8$ and $|\vec{v}| = 10$ and the angle between vectors \vec{u} and \vec{v} is 60° determine:
 - a. $|\vec{u} \vec{v}|$
 - b. the direction of $\vec{u} \vec{v}$ relative to \vec{u}
 - c. the unit vector in the direction of $\vec{u} + \vec{v}$
 - d. $|5\vec{u} + 2\vec{v}|$

- 7. The vectors \vec{p} and \vec{q} are distinct unit vectors that are placed in a tail-to-tail position. If these two vectors have an angle of 60° between them, determine $|2\vec{p} \vec{q}|$.
- 8. The vector \vec{m} is collinear (parallel) to \vec{n} but in the opposite direction. Express the magnitude of $\vec{m} + \vec{n}$ in terms of the magnitudes of \vec{m} and \vec{n} .
- 9. ABCD is a parallelogram. If $\overrightarrow{AB} = \vec{x}$ and $\overrightarrow{DA} = \vec{y}$, express \overrightarrow{BC} , \overrightarrow{DC} , \overrightarrow{BD} , and \overrightarrow{AC} in terms of \vec{x} and \vec{y} .
- 10. If A, B, and C are three collinear points with B at the midpoint of AC, and O is any point not on the line AC, prove that $\overrightarrow{OA} + \overrightarrow{OC} = 2\overrightarrow{OB}$. (*Hint*: $\overrightarrow{AB} = \overrightarrow{BC}$.)
- 11. *ABCD* is a quadrilateral with $\overrightarrow{AB} = \vec{x}$, $\overrightarrow{CD} = 2\vec{y}$, and $\overrightarrow{AC} = 3\vec{x} \vec{y}$. Express \overrightarrow{BD} and \overrightarrow{BC} in terms of \vec{x} and \vec{y} .
- 12. An airplane is heading due south at a speed of 500 km/h when it encounters a head wind from the south at 40 km/h. What is the resultant ground velocity of the airplane?
- 13. *PQRST* is a pentagon. State a single vector that is equivalent to each of the following:

14. The vectors \vec{a} and \vec{b} are given below. Use these vectors to sketch each of the following.

a.
$$\frac{1}{3}\vec{a} + \vec{b}$$
 b. $\frac{3}{2}\vec{a} - 2\vec{b}$ c. $-\vec{b} + \vec{a}$ d. $\frac{\vec{b} + \vec{a}}{2}$

15. *PQRS* is a quadrilateral with $\overrightarrow{PQ} = 2\overrightarrow{a}$, $\overrightarrow{QR} = 3\overrightarrow{b}$, and $\overrightarrow{QS} = 3\overrightarrow{b} - 3\overrightarrow{a}$. Express \overrightarrow{PS} and \overrightarrow{RS} in terms of \overrightarrow{a} and \overrightarrow{b} .