Review Exercise

- 1. Determine whether each of the following statements is true or false. Provide a brief explanation for each answer.
 - a. $\left| \vec{a} + \vec{b} \right| \ge \left| \vec{a} \right|$
 - b. $\left| \vec{a} + \vec{b} \right| = \left| \vec{a} + \vec{c} \right|$ implies $\left| \vec{b} \right| = \left| \vec{c} \right|$
 - c. $\vec{a} + \vec{b} = \vec{a} + \vec{c}$ implies $\vec{b} = \vec{c}$
 - d. $\overrightarrow{RF} = \overrightarrow{SW}$ implies $\overrightarrow{RS} = \overrightarrow{FW}$
 - e. $m\vec{a} + n\vec{a} = (m+n)\vec{a}$
 - f. If $|\vec{a}| = |\vec{b}|$ and $|\vec{c}| = |\vec{d}|$, then $|\vec{a} + \vec{b}| = |\vec{c} + \vec{d}|$.
- 2. If $\vec{x} = 2\vec{a} 3\vec{b} 4\vec{c}$, $\vec{y} = -2\vec{a} + 3\vec{b} + 3\vec{c}$, and $\vec{z} = 2\vec{a} 3\vec{b} + 5\vec{c}$, determine simplified expressions for each of the following:
 - a. $2\vec{x} 3\vec{y} + 5\vec{z}$
 - b. $3(-2\vec{x} 4\vec{y} + \vec{z}) (2\vec{x} \vec{y} + \vec{z}) 2(-4\vec{x} 5\vec{y} + \vec{z})$
- 3. If X(-2, 1, 2) and Y(-4, 4, 8) are two points in \mathbb{R}^3 , determine the following: a. \overrightarrow{XY} and $|\overrightarrow{XY}|$
 - b. The coordinates of a unit vector in the same direction as \overrightarrow{XY} .
- 4. X(-1, 2, 6) and Y(5, 5, 12) are two points in R^3 .
 - a. Determine the components of a position vector equivalent to \overrightarrow{YX} .
 - b. Determine the components of a *unit* vector that is in the same direction as \overrightarrow{YX} .
- 5. Find the components of the unit vector with the opposite direction to that of the vector from M(2, 3, 5) to N(8, 1, 2).
- 6. A parallelogram has its sides determined by the vectors $\overrightarrow{OA} = (3, 2, -6)$ and $\overrightarrow{OB} = (-6, 6, -2)$.
 - a. Determine the components of the vectors representing the diagonals.
 - b. Determine the angles between the sides of the parallelogram.
- 7. The points A(-1, 1, 1), B(2, 0, 3), and C(3, 3, -4) are vertices of a triangle.
 - a. Show that this triangle is a right triangle.
 - b. Calculate the area of triangle ABC.
 - c. Calculate the perimeter of triangle ABC.
 - d. Calculate the coordinates of the fourth vertex *D* that completes the rectangle of which *A*, *B*, and *C* are the other three vertices.

- 8. The vectors \vec{a} , \vec{b} , and \vec{c} are as shown.
 - a. Construct the vector $\vec{a} \vec{b} + \vec{c}$.

 \overrightarrow{b}

 \overrightarrow{a}

- b. If the vectors \vec{a} and \vec{b} are perpendicular, and if $|\vec{a}| = 4$ and $|\vec{b}| = 3$, determine $|\vec{a} + \vec{b}|$.
- 9. Given $\vec{p} = (-11, 7)$, $\vec{q} = (-3, 1)$, and $\vec{r} = (-1, 2)$, express each vector as a linear combination of the other two.
- 10. a. Find an equation to describe the set of points equidistant from A(2, -1, 3) and B(1, 2, -3).
 - b. Find the coordinates of two points that are equidistant from A and B.
- 11. Calculate the values of *a*, *b*, and *c* in each of the following:

a.
$$2(a, b, 4) + \frac{1}{2}(6, 8, c) - 3(7, c, -4) = (-24, 3, 25)$$

b. $2\left(a, a, \frac{1}{2}a\right) + (3b, 0, -5c) + 2\left(c, \frac{3}{2}c, 0\right) = (3, -22, 54)$

- 12. a. Determine whether the points A(1, -1, 1), B(2, 2, 2), and C(4, -2, 1) represent the vertices of a right triangle.
 - b. Determine whether the points P(1, 2, 3), Q(2, 4, 6), and R(-1, -2, -3) are collinear.
- 13. a. Show that the points A(3, 0, 4), B(1, 2, 5), and C(2, 1, 3) represent the vertices of a right triangle.
 - b. Determine $\cos \angle ABC$.
- 14. In the following rectangle, vectors are indicated by the direction of the arrows.

- a. Name two pairs of vectors that are opposites.
- b. Name two pairs of identical vectors.
- c. Explain why $|\overrightarrow{AD}|^2 + |\overrightarrow{DC}|^2 = |\overrightarrow{DB}|^2$.

15. A rectangular prism measuring 3 by 4 by 5 is drawn on a coordinate axis as shown in the diagram.

- a. Determine the coordinates of points C, P, E, and F.
- b. Determine position vectors for \overrightarrow{DB} and \overrightarrow{CF} .
- c. By drawing the rectangle containing \overrightarrow{DB} and \overrightarrow{OP} , determine the acute angle between these vectors.
- d. Determine the angle between \overrightarrow{OP} and \overrightarrow{AE} .
- 16. The vectors \vec{d} and \vec{e} are such that $|\vec{d}| = 3$ and $|\vec{e}| = 5$, and the angle between them is 30°. Determine each of the following:
 - a. $|\vec{d} + \vec{e}|$ b. $|\vec{d} \vec{e}|$ c. $|\vec{e} \vec{d}|$
- 17. An airplane is headed south at speed 400 km/h. The airplane encounters a wind from the east blowing at 100 km/h.
 - a. How far will the airplane travel in 3 h?
 - b. What is the direction of the airplane?
- 18. a. Explain why the set of vectors: $\{(2, 3), (3, 5)\}$ spans \mathbb{R}^2 .
 - b. Find *m* and *n* in the following: m(2, 3) + n(3, 5) = (323, 795).
- 19. a. Show that the vector $\vec{a} = (5, 9, 14)$ can be written as a linear combination of the vectors \vec{b} and \vec{c} , where $\vec{b} = (-2, 3, 1)$ and $\vec{c} = (3, 1, 4)$. Explain why \vec{a} lies in the plane determined by \vec{b} and \vec{c} .
 - b. Is the vector $\vec{a} = (-13, 36, 23)$ in the span of $\vec{b} = (-2, 3, 1)$ and $\vec{c} = (3, 1, 4)$? Explain your answer.

- 20. A cube is placed so that it has three of its edges located along the positive *x*-, *y*-, and *z*-axes (one edge along each axis) and one of its vertices at the origin.
 - a. If the cube has a side length of 4, draw a sketch of this cube and write the coordinates of its vertices on your sketch.
 - b. Write the coordinates of the vector with its head at the origin and its tail at the opposite vertex.
 - c. Write the coordinates of a vector that starts at (4, 4, 4) and is a diagonal in the plane parallel to the *xz*-plane.
 - d. What vector starts at the origin and is a diagonal in the *xy*-plane?

21. If
$$\vec{a} = \vec{i} + \vec{j} - \vec{k}$$
, $\vec{b} = 2\vec{i} - \vec{j} + 3\vec{k}$, and $\vec{c} = 2\vec{i} + 13\vec{k}$, determine
 $\left|2\left(\vec{a} + \vec{b} - \vec{c}\right) - \left(\vec{a} + 2\vec{b}\right) + 3\left(\vec{a} - \vec{b} + \vec{c}\right)\right|$.

- 22. The three points A(-3, 4), B(3, -4), and C(5, 0) are on a circle with radius 5 and centre at the origin. Points *A* and *B* are the endpoints of a diameter, and point *C* is on the circle.
 - a. Calculate $|\overrightarrow{AB}|$, $|\overrightarrow{AC}|$, and $|\overrightarrow{BC}|$.
 - b. Show that A, B, and C are the vertices of a right triangle.
- 23. In terms of \vec{a} , \vec{b} , \vec{c} , and $\vec{0}$, find a vector expression for each of the following:

- 24. Draw a diagram showing the vectors \vec{a} and \vec{b} , where $|\vec{a}| = 2|\vec{b}|$ and $|\vec{b}| = |\vec{a} + \vec{b}|$ are both true. (Make sure to indicate the direction of the vectors.)
- 25. If the vectors \vec{a} and \vec{b} are perpendicular to each other, express each of the following in terms of $|\vec{a}|$ and $|\vec{b}|$:

a.
$$|\vec{a} + \vec{b}|$$
 b. $|\vec{a} - \vec{b}|$ c. $|2\vec{a} + 3\vec{b}|$

26. Show that if \vec{a} is perpendicular to each of the vectors \vec{b} and \vec{c} , then \vec{a} is perpendicular to $2\vec{b} + 4\vec{c}$.