
Chapter 6 Test

1. The vectors \vec{a} , \vec{b} , and \vec{c} are shown.

Using these three vectors, demonstrate that $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$. Name this property and explain how your answer shows this to be true.

- 2. A(-2, 3, -5) and B(6, 7, 3) are two points in \mathbb{R}^3 . Determine each of the following:
 - a. \overrightarrow{AB}
- b. $|\overrightarrow{AB}|$
- c. a unit vector in the direction of \overrightarrow{BA}
- 3. The vectors \vec{x} and \vec{y} are each of length 3 units, i.e., $|\vec{x}| = |\vec{y}| = 3$. If $|\vec{x} + \vec{y}| = \sqrt{17}$, determine $|\vec{x} \vec{y}|$.
- 4. a. If $3\vec{x} 2\vec{y} = \vec{a}$ and $5\vec{x} 3\vec{y} = \vec{b}$, express the vectors \vec{x} and \vec{y} in terms of \vec{a} and \vec{b} .
 - b. Solve for a, b, and c: (2, -1, c) + (a, b, 1) 3(2, a, 4) = (-3, 1, 2c).
- 5. a. Explain why the vectors $\vec{a} = (-2, 3)$ and $\vec{b} = (3, -1)$ span \mathbb{R}^2 .
 - b. Determine the values of *p* and *q* in p(-2, 3) + q(3, -1) = (13, -9).
- 6. a. Show that the vector $\vec{a} = (1, 12, -29)$ can be written as a linear combination of $\vec{b} = (3, 1, 4)$ and $\vec{c} = (1, 2, -3)$.
 - b. Determine whether $\vec{r} = (16, 11, -24)$ can be written as a linear combination of $\vec{p} = (-2, 3, 4)$ and $\vec{q} = (4, 1, -6)$. Explain the significance of your result geometrically.
- 7. \vec{x} and \vec{y} are vectors of magnitude 1 and 2, respectively, with an angle of 120° between them. Determine $|3\vec{x} + 2\vec{y}|$ and the direction of $3\vec{x} + 2\vec{y}$.
- 8. In triangle ABC, point D is the midpoint of \overrightarrow{BC} and point E is the midpoint of \overrightarrow{AC} . Vectors are marked as shown. Use vectors to prove that $\overrightarrow{DE} = \frac{1}{2}\overrightarrow{BA}$.

