Review Exercise

- 1. Given that $\vec{a} = (-1, 2, 1)$, $\vec{b} = (-1, 0, 1)$, and $\vec{c} = (-5, 4, 5)$, determine each of the following:
 - a. $\vec{a} \times \vec{b}$
 - b. $\vec{b} \times \vec{c}$
 - c. $|\vec{a} \times \vec{b}| \times |\vec{b} \times \vec{c}|$
 - d. Why is it possible to conclude that the vectors \vec{a} , \vec{b} , and \vec{c} are coplanar?
- 2. Given that \vec{i} , \vec{j} , and \vec{k} represent the standard basis vectors, $\vec{a} = 2\vec{i} \vec{j} + 2\vec{k}$ and $\vec{b} = 6\vec{i} + 3\vec{j} 2\vec{k}$, determine each of the following:

- c. $|\vec{a} \vec{b}|$ e. $\vec{a} \cdot \vec{b}$ d. $|\vec{a} + \vec{b}|$ f. $\vec{a} \cdot (\vec{a} 2\vec{b})$
- 3. a. For what value(s) of a are the vectors $\vec{x} = (3, a, 9)$ and $\vec{y} = (a, 12, 18)$ collinear?
 - b. For what value(s) of a are these vectors perpendicular?
- 4. Determine the angle between the vectors $\vec{x} = (4, 5, 20)$ and $\vec{y} = (-3, 6, 22)$.
- 5. A parallelogram has its sides determined by $\overrightarrow{OA} = (5, 1)$ and $\overrightarrow{OB} = (-1, 4)$.
 - a. Draw a sketch of the parallelogram.
 - b. Determine the angle between the two diagonals of this parallelogram.
- 6. An object of mass 10 kg is suspended by two pieces of rope that make an angle of 30° and 45° with the horizontal. Determine the tension in each of the two pieces of rope.
- 7. An airplane has a speed of 300 km/h and is headed due west. A wind is blowing from the south at 50 km/h. Determine the resultant velocity of the airplane.
- 8. The diagonals of a parallelogram are determined by the vectors $\vec{x} = (3, -3, 5)$ and $\vec{y} = (-1, 7, 5)$.
 - a. Construct x, y, and z coordinate axes and draw the two given vectors. In addition, draw the parallelogram formed by these vectors.
 - b. Determine the area of the parallelogram.
- 9. Determine the components of a unit vector perpendicular to (0, 3, -5) and to (2, 3, 1).
- 10. A triangle has vertices A(2, 3, 7), B(0, -3, 4), and C(5, 2, -4).
 - a. Determine the largest angle in the triangle.
 - b. Determine the area of $\triangle ABC$.

418 REVIEW EXERCISE

- 12. A particle is acted upon by the following four forces: 25 N pulling east, 30 N pulling west, 54 N pulling north, and 42 N pulling south.
 - a. Draw a diagram showing these four forces.
 - b. Calculate the resultant and equilibrant of these forces.

a. Select an appropriate origin, and then determine coordinates for the other vertices.

- c. Determine the scalar projection of \overrightarrow{AF} on \overrightarrow{AC} .
- 14. If \vec{a} and \vec{b} are unit vectors, and $|\vec{a} + \vec{b}| = \sqrt{3}$, determine $(2\vec{a} 5\vec{b}) \cdot (\vec{b} + 3\vec{a})$.

- a. At what angle to the bank should Kayla swim if she wishes to swim directly across?
- b. If the river has a width of 300 m, how long will it take for her to cross the river?
- c. If Kayla's speed and the river's speed had been reversed, explain why it would not have been possible for her to swim across the river.

16. A parallelogram has its sides determined by the vectors $\overrightarrow{OA} = (3, 2, -6)$ and $\overrightarrow{OB} = (-6, 6, -2)$.

- a. Determine the coordinates of vectors representing the diagonals.
- b. Determine the angle between the sides of the parallelogram.

17. You are given the vectors $\vec{p} = (2, -2, -3)$ and $\vec{q} = (a, b, 6)$.

- a. Determine values of a and b if \vec{q} is collinear with \vec{p} .
- b. Determine an algebraic condition for \vec{p} and \vec{q} to be perpendicular.
- c. Using the answer from part b., determine the components of a unit vector that is perpendicular to \vec{p} .

- 18. For the vectors $\vec{m} = (\sqrt{3}, -2, -3)$ and $\vec{n} = (2, \sqrt{3}, -1)$, determine the following:
 - a. the angle between these two vectors, to the nearest degree
 - b. the scalar projection of \vec{n} on \vec{m}
 - c. the vector projection of \vec{n} on \vec{m}
 - d. the angle that \overrightarrow{m} makes with the z-axis
- 19. A number of unit vectors, each of which is perpendicular to the other vectors in the set, is said to form a *special* set. Determine which of the following sets are special.

a.
$$(1, 0, 0), (0, 0, -1), (0, 1, 0)$$

b.
$$\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right), \left(\frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right), (0, 0, -1)$$

20. If $\vec{p} = \vec{i} - 2\vec{j} + \vec{k}$, $\vec{q} = 2\vec{i} - \vec{j} + \vec{k}$, and $\vec{r} = \vec{j} - 2\vec{k}$, determine each of the following:

a.
$$\vec{p} \times \vec{q}$$

c.
$$(\vec{p} \times \vec{r}) \cdot \vec{r}$$

a.
$$\vec{p} \times \vec{q}$$

b. $(\vec{p} - \vec{q}) \times (\vec{p} + \vec{q})$

d.
$$(\vec{p} \times \vec{q}) \times \vec{r}$$

- 21. Two forces of equal magnitude act on an object so that the angle between their directions is 60°. If their resultant has a magnitude of 20 N, find the magnitude of the equal forces.
- 22. Determine the components of a vector that is perpendicular to the vectors $\vec{a} = (3, 2, -1)$ and $\vec{b} = (5, 0, 1)$.
- 23. If $|\vec{x}| = 2$ and $|\vec{y}| = 5$, determine the dot product between $\vec{x} 2\vec{y}$ and $\vec{x} + 3\vec{y}$ if the angle between \vec{x} and \vec{y} is 60° .
- 24. The magnitude of the scalar projection of (1, m, 0) on (2, 2, 1) is 4. Determine the value of m.
- 25. Determine the angle that the vector $\vec{a} = (12, -3, 4)$ makes with the y-axis.
- 26. A rectangular solid measuring 3 by 4 by 5 is placed on a coordinate axis as shown in the diagram at the left.
 - a. Determine the coordinates of points C and F.
 - b. Determine \overrightarrow{CF} .
 - c. Determine the angle between the vectors \overrightarrow{CF} and \overrightarrow{OP} .

27. The vectors
$$\vec{d}$$
 and \vec{e} are such that $|\vec{d}| = 3$ and $|\vec{e}| = 5$, where the angle between the two given vectors is 50°. Determine each of the following:

a.
$$|\vec{d} + \vec{e}|$$

b.
$$\left| \overrightarrow{d} - \overrightarrow{e} \right|$$

c.
$$|\vec{e} - \vec{d}|$$

28. Find the scalar and vector projections of $\vec{i} + \vec{j}$ on each of the following vectors:

a.
$$\vec{i}$$

b.
$$\vec{j}$$

c.
$$\vec{k} + \vec{j}$$

29. a. Determine which of the following are unit vectors:

$$\vec{a} = \left(\frac{1}{2}, \frac{1}{3}, \frac{1}{6}\right), \vec{b} = \left(\frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \right), \vec{c} = \left(\frac{1}{2}, \frac{-1}{\sqrt{2}}, \frac{1}{2}\right), \text{ and } \vec{d} = (-1, 1, 1)$$

b. Which one of vectors \vec{a} , \vec{b} , or \vec{c} is perpendicular to vector \vec{d} ? Explain.

30. A 25 N force is applied at the end of a 60 cm wrench. If the force makes a 30° angle with the wrench, calculate the magnitude of the torque.

31. a. Verify that the vectors $\vec{a} = (2, 5, -1)$ and $\vec{b} = (3, -1, 1)$ are perpendicular.

b. Find the direction cosines for each vector.

c. If $\overrightarrow{m_1} = (\cos \alpha_a, \cos \beta_a, \cos \gamma_a)$, the direction cosines for \overrightarrow{a} , and if $\overrightarrow{m_2} = (\cos \alpha_b, \cos \beta_b, \cos \gamma_b)$, the direction cosines for $\overrightarrow{b_2}$, verify that $\overrightarrow{m_1} \cdot \overrightarrow{m_2} = 0$.

32. The diagonals of quadrilateral *ABCD* are $3\vec{i} + 3\vec{j} + 10\vec{k}$ and $-\vec{i} + 9\vec{j} - 6\vec{k}$. Show that quadrilateral *ABCD* is a rectangle.

33. The vector \vec{v} makes an angle of 30° with the *x*-axis and equal angles with both the *y*-axis and *z*-axis.

a. Determine the direction cosines for \vec{v} .

b. Determine the angle that \vec{v} makes with the z-axis.

34. The vectors \vec{a} and \vec{b} are unit vectors that make an angle of 60° with each other. If $\vec{a} - 3\vec{b}$ and $m\vec{a} + \vec{b}$ are perpendicular, determine the value of m.

35. If
$$\vec{a} = (0, 4, -6)$$
 and $\vec{b} = (-1, -5, -2)$, verify that $\vec{a} \cdot \vec{b} = \frac{1}{4} |\vec{a} + \vec{b}|^2 - \frac{1}{4} |\vec{a} - \vec{b}|^2$.

37. Find the lengths of the sides, the cosines of the angles, and the area of the triangle whose vertices are A(1, -2, 1), B(3, -2, 5), and C(2, -2, 3).