The Derivatives of General Logarithmic Functions

In the previous section, we learned how to determine the derivative of the natural logarithmic function (base *e*). But what is the derivative of $y = \log_2 x$? The base of this function is 2, not *e*.

To differentiate the general logarithmic function $y = \log_a x$, a > 0, $a \neq 1$, we can use the properties of logarithms so that we can use the base *e*.

Let $y = \log_a x$.

Then $a^y = x$.

Take the logarithm of both sides using the base *e*.

$$\ln a^{y} = \ln x$$
$$y \ln a = \ln x$$
$$y = \frac{\ln x}{\ln a}$$

Differentiating both sides with respect to *x*, we obtain

$$\frac{dy}{dx} = \frac{d\left(\frac{\ln x}{\ln a}\right)}{dx}$$
$$= \frac{1}{\ln a} \times \frac{d(\ln x)}{dx} \quad (\ln a \text{ is a constant.})$$
$$= \frac{1}{\ln a} \times \frac{1}{x}$$
$$= \frac{1}{x \ln a}$$

The Derivative of the Logarithmic Function $y = \log_a x$ If $y = \log_a x$, a > 0, $a \neq 1$, then $\frac{dy}{dx} = \frac{1}{x \ln a}$.

EXAMPLE 1 Solving a tangent problem involving a logarithmic function

Determine the equation of the tangent to $y = \log_2 x$ at (8, 3).

Solution

The slope of the tangent is given by the derivative $\frac{dy}{dx}$, where $y = \log_2 x$.

$$\frac{dy}{dx} = \frac{1}{x \ln 2}$$

At $x = 8$, $\frac{dy}{dx} = \frac{1}{8 \ln 2}$.

The equation of the tangent is

$$y - 3 = \frac{1}{8 \ln 2} (x - 8)$$
$$y = \frac{1}{8 \ln 2} x + 3 - \frac{1}{\ln 2}$$

We can determine the derivatives of other logarithmic functions using the rule $\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}$, along with other derivative rules.

EXAMPLE 2 Selecting a strategy to differentiate a composite logarithmic function

Determine the derivative of $y = \log_4(2x + 3)^5$.

Solution

We can rewrite the logarithmic function as follows:

$$y = \log_{4}(2x + 3)^{5}$$

$$y = 5 \log_{4}(2x + 3)$$
 (Property of logarithms)

$$\frac{dy}{dx} = \frac{d}{dx}[5 \log_{4}(2x + 3)]$$

$$= 5\frac{d}{dx}[\log_{4}(2x + 3)] \frac{d(2x + 3)}{dx}$$
 (Chain rule)

$$= 5\left(\frac{1}{(2x + 3)\ln 4}\right)(2)$$
 (Simplify)

$$= \frac{10}{(2x + 3)\ln 4}$$

The Derivative of a Composite Function Involving $y = \log_a x$

If $y = \log_a f(x)$, a > 0, $a \neq 1$, then $\frac{dy}{dx} = \frac{f'(x)}{f(x) \ln a}$.

Exercise

PART A

- 1. Determine $\frac{dy}{dx}$ for each function.
 - a. $y = \log_5 x$ d. $y = -3 \log_7 x$
 - b. $y = \log_3 x$ e. $y = -(\log x)$
 - c. $y = 2 \log_4 x$ f. $y = 3 \log_6 x$
- 2. Determine the derivative of each function.

a.
$$y = \log_3(x + 2)$$

b. $y = \log_8(2x)$
c. $y = -3 \log_3(2x + 3)$
d. $y = \log_{10}(5 - 2x)$
e. $y = \log_8(2x + 6)$
f. $y = \log_7(x^2 + x + 1)$

PART B

- 3. a. If f(t) = log₂(t+1/(2t+7)), evaluate f'(3).
 b. If h(t) = log₃(log₂(t)), determine h'(8).
- 4. Differentiate.

a.
$$y = \log_{10} \left(\frac{1+x}{1-x} \right)$$

b. $y = \log_2 \sqrt{x^2 + 3x}$
c. $y = 2 \log_3(5^x) - \log_3(4^x)$
d. $y = 3^x \log_3 x$
e. $y = 2x \log_4 x$
f. $y = \frac{\log_5(3x^2)}{\sqrt{x+1}}$

5. Determine the equation of the tangent to the curve $y = x \log x$ at x = 10. Graph the function and the tangent.

- 6. Explain why the derivative of $y = \log_a kx$, k > 0, is $\frac{dy}{dx} = \frac{1}{x \ln a}$ for any constant k.
- 7. Determine the equation of the tangent to the curve $y = 10^{2x-9} \log_{10}(x^2 3x)$ at x = 5.
- 8. A particle's distance, in metres, from a fixed point at time, *t*, in seconds is given by $s(t) = t \log_6(t+1), t \ge 0$. Is the distance increasing or decreasing at t = 15? How do you know?

PART C

- 9. a. Determine the equation of the tangent to $y = \log_3 x$ at the point (9, 2).
 - b. Graph the function and include any asymptotes.
 - c. Will this tangent line intersect any asymptotes? Explain.
- 10. Determine the domain, critical numbers, and intervals of increase and decrease of $f(x) = \ln(x^2 4)$.
- 11. Do the graphs of either of these functions have points of inflection? Justify your answers with supporting calculations.

a. $y = x \ln x$

- b. $y = 3 2 \log x$
- 12. Determine whether the slope of the graph of $y = 3^x$ at the point (0, 1) is greater than the slope of the graph of $y = \log_3 x$ at the point (1, 0). Include graphs with your solution.