b.
$$\frac{\frac{1}{2}\overline{b}}{\overline{b}}$$

$$2\overrightarrow{a} + \frac{1}{2}\overrightarrow{b}$$

$$2\overrightarrow{a}$$

23. a.
$$\left(\frac{6}{7}, \frac{2}{7}, -\frac{3}{7}\right)$$
 b. $\left(-\frac{6}{7}, -\frac{2}{7}, \frac{3}{7}\right)$

24. a.
$$\overrightarrow{OC} = (8, 9),$$
 $\overrightarrow{BD} = (10, -5)$

b. about 74.9°

c. about 85.6°

25. a.
$$x = t, y = -1 + t, z = 1, t \in \mathbb{R}$$

b. (1, 2, -3)

c.
$$x = 1, y = t, z = -3 + t, t \in \mathbf{R}$$

d.
$$x = 1 + 3s + t, y = t, z = s,$$

26. a. yes;
$$x = 0$$
, $y = -1 + t$, $z = t$, $t \in \mathbb{R}$

b. no

$$x = 2 - 2t, y = t, z = 3t, t \in \mathbf{R}$$

28. a.
$$-\frac{3}{2}$$

29.
$$\vec{r} = t(-1, 3, 1), t \in \mathbb{R},$$

 $-x + 3y + z - 11 = 0$

30. (-1, 1, 0)

31. a. 0.8 km

b. 12 min

32. a. Answers may vary.

 $\vec{r} = (6, 3, 4) + t(4, 4, 1), t \in \mathbf{R}$

b. The line found in part a will lie in the plane x - 2y + 4z - 16 = 0 if and only if both points A(2, -1, 3)and B(6, 3, 4) lie in this plane. We verify this by substituting these points into the equation of the plane, and checking for consistency. For A:

$$2-2(-1)+4(3)-16=0$$

For B:
 $6-2(3)+4(4)-16=0$
Since both points lie on the plan

Since both points lie on the plane, so does the line found in part a.

33. 20 km/h at N 53.1° E

34. parallel: 1960 N,

perpendicular: about 3394.82 N

- **35.** a. True; all non-parallel pairs of lines intersect in exactly one point in \mathbb{R}^2 . However, this is not the case for lines in \mathbb{R}^3 (skew lines provide a counterexample).
 - **b.** True; all non-parallel pairs of planes intersect in a line in \mathbb{R}^3 .

- **c.** True; the line x = y = z has direction vector (1, 1, 1), which is not perpendicular to the normal vector (1, -2, 2) to the plane x - 2y + 2z = k, k is any constant. Since these vectors are not perpendicular, the line is not parallel to the plane, and so they will intersect in exactly one point.
- d. False; a direction vector for the line $\frac{z}{2} = y - 1 = \frac{z+1}{2} \text{ is } (2, 1, 2).$ A direction vector for the line $\frac{z-1}{-4} = \frac{y-1}{-2} = \frac{z+1}{-2} \text{ is }$ (-4, -2, -2), or (2, 1, 1) (which is parallel to (-4, -2, -2)). Since (2, 1, 2) and (2, 1, 1) are obviously not parallel, these two lines are not parallel.
- 36. a. A direction vector for L_1 : x = 2, $\frac{y - 2}{2} = z$ is (0, 3, 1),

and a direction vector for

$$L_2$$
: $x = y + k = \frac{z + 14}{k}$ is $(1, 1, k)$.

But (0, 3, 1) is not a nonzero scalar multiple of (1, 1, k) for any k, since the first component of (0, 3, 1) is 0. This means that the direction vectors for L_1 and L_2 are never parallel, which means that these lines are never parallel for anv k.

b. 6; (2, -4, -2)

Calculus Appendix

Implicit Differentiation, p. 564

- 1. The chain rule states that if y is a composite function, then $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$. To differentiate an equation implicitly, first differentiate both sides of the equation with respect to x, using the chain rule for terms involving y, then solve for $\frac{dy}{dx}$.

- **3. a.** $y = \frac{2}{3}x \frac{13}{3}$
 - **b.** $y = \frac{2}{3}(x+8) + 3$
 - **c.** $y = -\frac{3\sqrt{3}}{5}x 3$
 - **d.** $y = \frac{11}{10}(x+11) 4$

b.
$$\left(\frac{3}{\sqrt{5}}, \sqrt{5}\right)$$
 and $\left(-\frac{3}{\sqrt{5}}, -\sqrt{5}\right)$

6. -10 **7.** 7x - y - 11 = 0

8.
$$y = \frac{1}{2}x - \frac{3}{2}$$

- **9. a.** $\frac{4}{(x+y)^2} 1$
- **b.** $4\sqrt{x+y} 1$ **10. a.** $\frac{3x^2 8xy}{4x^2 3}$
 - **b.** $y = \frac{x^3}{4x^2 3}; \frac{4x^4 9x^2}{(4x^2 3)^2}$
 - **c.** $\frac{dy}{dx} = \frac{3x^2 8xy}{4x^2 3}$ $y = \frac{x^3}{4x^2 - 3}$
 - $\frac{dy}{dx} = \frac{3x^2 8x\left(\frac{x^3}{4x^2 3}\right)}{4x^2 3}$ $= \frac{3x^2 - (4x^2 - 3) - 8x^4}{(4x^2 - 3)^2}$
 - $=\frac{12x^4-9x^2-8x^4}{(4x^2-3)^2}$ $=\frac{4x^4-9x^2}{(4x^2-3)^2}$
- 11. a.

b.

one tangent

one tangent

c.

one tangent

d.

12.
$$\frac{1}{2} \left(\frac{x}{y} \right)^{-\frac{1}{2}} \frac{1y - \frac{dy}{dx}x}{y^2}$$

$$+ \frac{1}{2} \left(\frac{y}{x} \right)^{-\frac{1}{2}} \frac{dy}{dx} x - y = 0$$

$$\frac{y^{\frac{1}{2}}}{2x^{\frac{1}{2}}}\frac{1y - \frac{dy}{dx}x}{y^2} + \frac{x^{\frac{1}{2}}}{2y^{\frac{1}{2}}}\frac{\frac{dy}{dx}x - y}{x^2} = 0$$

Multiply by $2x^2y^2$:

$$x^{\frac{3}{2}}y^{\frac{1}{2}}\left(y - x\frac{dy}{dx}\right) + x^{\frac{1}{2}}y^{\frac{3}{2}}\left(\frac{dy}{dx}x - y\right) = 0$$

$$x^{\frac{3}{2}}y^{\frac{3}{2}} - x^{\frac{5}{2}}y^{\frac{1}{2}}\frac{dy}{dx} + x^{\frac{3}{2}}y^{\frac{3}{2}}\frac{dy}{dx} - x^{\frac{1}{2}}y^{\frac{5}{2}} = 0$$

$$\frac{dy}{dx} \left(x^{\frac{3}{2}} y^{\frac{3}{2}} - x^{\frac{5}{2}} y^{\frac{1}{2}} \right) = x^{\frac{1}{2}} y^{\frac{5}{2}} - x^{\frac{3}{2}} y^{\frac{3}{2}}$$

$$\frac{dy}{dx} = \frac{x^{\frac{1}{2}} y^{\frac{3}{2}} (y - x)}{x^{\frac{3}{2}} y^{\frac{1}{2}} (y - x)}$$

$$\frac{dy}{dx} = \frac{y}{x}, \text{ as required.}$$

Let P(a, b) be the point of intersection where $a \neq 0$ and $b \neq 0$.

For
$$x^2 - y^2 = k$$
,

$$2x - 2y\frac{dy}{dx} = 0$$
$$\frac{dy}{dx} = \frac{x}{y}$$

At
$$P(a, b)$$
,
$$\frac{dy}{dx} = \frac{a}{b}$$

For
$$xy = P$$
,

$$1 \cdot y + \frac{dy}{dx}x = P$$
$$\frac{dy}{dx} = -\frac{y}{x}$$

At P(a, b),

$$\frac{dy}{dx} = -\frac{b}{a}$$

At point P(a, b), the slope of the tangent line of xy = P is the negative reciprocal of the slope of the tangent line of $x^2 - y^2 = k$. Therefore, the tangent lines intersect at right angles, and thus, the two curves intersect orthogonally for all values of the constants k and P.

15.
$$\frac{1}{2}x^{\frac{1}{2}} + \frac{1}{2}y^{\frac{1}{2}}\frac{dy}{dx} = 0$$
 $\frac{dy}{dx} = -\frac{\sqrt{y}}{\sqrt{x}}$

Let P(a, b) be the point of tangency.

$$\frac{dy}{dx} - \frac{\sqrt{b}}{\sqrt{a}}$$

Equation on tangent line
$$l$$
 and P is
$$\frac{y-b}{x-a} = -\frac{\sqrt{b}}{\sqrt{a}}.$$

x-intercept is found when y = 0.

$$\frac{-b}{x-a} = -\frac{\sqrt{b}}{\sqrt{a}}$$
$$-b\sqrt{a} = -\sqrt{b}x + a\sqrt{b}$$
$$x = \frac{a\sqrt{b} + b\sqrt{a}}{\sqrt{b}}$$

Therefore, the *x*-intercept is $\frac{\sqrt{b}}{\sqrt{1 + \frac{1}{2} \sqrt{1 + \frac{1}2} \sqrt{1$

For the *y*-intercept, let x = 0, $\frac{y-b}{-a} = -\frac{\sqrt{b}}{\sqrt{a}}$

y-intercept is
$$\frac{a\sqrt{b}}{\sqrt{a}} + b$$
.

The sum of the intercepts is

The sum of the intercepts is
$$\frac{a\sqrt{b} + b\sqrt{a}}{\sqrt{b}} + \frac{a\sqrt{b} + b\sqrt{a}}{\sqrt{a}}$$

$$= \frac{a^{\frac{3}{2}}b^{\frac{1}{2}} + 2ab + b^{\frac{3}{2}}a^{\frac{1}{2}}}{a^{\frac{1}{2}}b^{\frac{1}{2}}}$$

$$= \frac{a^{\frac{1}{2}}b^{\frac{1}{2}}(a + 2\sqrt{a}\sqrt{b} + b)}{a^{\frac{1}{2}}b^{\frac{1}{2}}}$$

$$= a + 2\sqrt{a}\sqrt{b} + b$$

$$= (a^{\frac{1}{2}} + b^{\frac{1}{2}})^{2}$$

Since P(a, b) is on the curve, then $\sqrt{a} + \sqrt{b} = \sqrt{k}$, or $a^{\frac{1}{2}} + b^{\frac{1}{2}} = k^{\frac{1}{2}}$. Therefore, the sum of the intercepts

is
$$(k^{\frac{1}{2}})^2 = k$$
, as required.
16. $(x+2)^2 + (y-5)^5 = 18$ and $(x-4)^2 + (y+1)^2 = 18$

Related Rates, pp. 569-570

1. a.
$$\frac{dA}{dt} = 4 \text{ m/s}^2$$

b.
$$\frac{dS}{dt} = -3 \text{ m}^2/\text{min}$$

c.
$$\frac{ds}{dt} = 70 \text{ km/h}$$
, when $t = 0.25$

$$\mathbf{d.} \ \frac{dx}{dt} = \frac{dy}{dt}$$

e.
$$\frac{d\theta}{dt} = \frac{\pi}{10} \text{ rad/s}$$

2. a. decreasing at 5.9 °C/s

b. about 0.58 m

c. Solve T''(x) = 0.

area increasing at 100 cm²/s; perimeter increasing at 20 cm/s

a. increasing at 300 cm³/s

b. increasing at 336 cm²/s

5. increasing at 40 cm²/s

6. a.
$$\frac{5}{6\pi}$$
 km/h

b.
$$\frac{5}{3\pi}$$
 m/s

7.
$$\frac{1}{\pi}$$
 km/h

11.
$$5\sqrt{13} \text{ km/h}$$

12. a.
$$\frac{1}{72\pi}$$
 cm/s

b.
$$\frac{2}{49\pi}$$
 cm/s or about 0.01 cm/s

c.
$$\frac{1}{8\pi}$$
 cm/s or about 0.04 cm/s

13.
$$\frac{50}{\pi}$$
 cm/min; 94.25 min (or about 1.5 h)

Answers may vary. For example:

- a. The diameter of a right-circular cone is expanding at a rate of 4 cm/min. Its height remains constant at 10 cm. Find its radius when the volume is increasing at a rate of 80π cm³/min.
- **b.** Water is being poured into a right-circular tank at the rate of 12π m³/min. Its height is 4 m and its radius is 1 m. At what rate is the water level rising?
- c. The volume of a right-circular cone is expanding because its radius is increasing at 12 cm/min and its height is increasing at 6 cm/min. Find the rate at which its volume is changing when its radius is 20 cm and its height is 40 cm.
- **15.** $0.145\pi \text{ m}^3/\text{year}$

16.
$$\frac{2}{\pi}$$
 cm/min

17.
$$\frac{\sqrt{3}}{4}$$
 m/min

20. a.
$$\frac{4}{5\pi}$$
 cm/s

b.
$$\frac{8}{25\pi}$$
 cm/s

21. a.
$$x^2 + y^2 = \left(\frac{l}{2}\right)^2$$

b. $\frac{y^2}{t^2} + \frac{y^2}{(l-t)^2} = 1$

The Natural Logarithm and its Derivative, p. 575

- **1.** A natural logarithm has base e; a common logarithm has base 10.
- 2. Since $e = \lim_{h \to 0} (1 + h)^{\frac{1}{n}}$, let $h = \frac{1}{n}$. Therefore,

$$e = \lim_{\frac{1}{n} \to 0} \left(1 + \frac{1}{n} \right)^n.$$

But as
$$\frac{1}{n} \to 0$$
, $n \to \infty$.

Hatcher,
$$e = \lim_{\frac{1}{n} \to 0} \left(1 + \frac{1}{n} \right)^n.$$
But as $\frac{1}{n} \to 0$, $n \to \infty$.

Therefore, $e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n.$

If
$$n = 100$$
, $e = \left(1 + \frac{1}{100}\right)^{100}$
= 1.01¹⁰⁰
= 2.704 81

Try
$$n = 100 000$$
, etc.

3. **a.**
$$\frac{5}{5x+8}$$

b.
$$\frac{2x}{x^2 + 1}$$

c.
$$\frac{x}{15}$$

d.
$$\frac{1}{2(x+1)}$$

e.
$$\frac{3t^2-4t}{t^3-2t^2+1}$$

f.
$$\frac{2z+3}{2(z+3)}$$

4. a.
$$\ln x + 1$$

c.
$$e^t \ln t + \frac{e^t}{2}$$

c.
$$e^t \ln t + \frac{e^t}{t}$$
d. $\frac{-ze^{-z}}{e^{-z} + ze^{-z}}$

e.
$$\frac{te^t \ln t - e}{t(\ln t)^2}$$

$$\mathbf{f.} \ \frac{1}{2}e^{\sqrt{u}} \left(\frac{1}{2}e^{\sqrt{u}} \ln u + \frac{1}{u} \right)$$

c.

The value shown is approximately 2e, which matches the calculation in part a.

This value matches the calculation in part b.

6. a.
$$x = 0$$

c.
$$x = 0, \pm \sqrt{e - 1}$$

7. a.
$$x - 3y - 1 = 0$$

c. The equation on the calculator is in a different form, but is equivalent to the equation in part a.

8.
$$x - 2y + (2 \ln 2 - 4) = 0$$

9. a.
$$\left(\frac{1}{e}, \frac{1}{e^2}\right)$$
 and $(1, 0)$

c. The solution in part a is more precise and efficient.

10.
$$y = -\frac{1}{2}x + \ln 2$$

b.
$$\frac{-90}{3t+1}$$

c. about
$$-12.8 \text{ km/h/s}$$

13. a.
$$\frac{1}{x \ln x}$$

b. The function's domain is
$$\{x \in \mathbb{R} | x > 1\}$$
. The domain of the derivative is $\{x \in \mathbb{R} | x > 0 \text{ and } x \neq 1\}$.

The Derivatives of General Logarithmic Functions, p. 578

1. a.
$$\frac{1}{x \ln 5}$$

b.
$$\frac{1}{x \ln 3}$$

$$\mathbf{c.} \ \frac{2}{x \ln 4}$$

d.
$$\frac{-3}{x \ln 7}$$

e.
$$\frac{-1}{x \ln 10}$$

f.
$$\frac{3}{x \ln 6}$$

2. a. $\frac{1}{(x+2) \ln 3}$

b.
$$\frac{1}{x \ln 8}$$

c.
$$\frac{-6}{(2x+3) \ln 3}$$

d.
$$\frac{-2}{(5-2x) \ln 10}$$

e.
$$\frac{2}{(2x+6)\ln 8} = \frac{1}{(x+3)\ln 8}$$
f.
$$\frac{2x+1}{(x^2+x+1)\ln 7}$$
3. a.
$$\frac{5}{52\ln 2}$$

f.
$$\frac{2x+1}{(x^2+x+1)\ln 7}$$

3. a.
$$\frac{5}{52 \ln 2}$$

b.
$$\frac{1}{8 \log_2(8)(\ln 3)(\ln 2)}$$

a.
$$\frac{2}{(1-x^2)\ln 10}$$

4. **a.**
$$\frac{2}{(1-x^2)\ln 10}$$

b. $\frac{2x+3}{2(x^2+3x)\ln (2)}$
c. $\frac{2\ln 5 - \ln 4}{\ln 3}$

c.
$$\frac{2 \ln 5 - \ln 4}{\ln 3}$$

d.
$$\frac{x \ln 3(3^x)(\ln x) + 3^x}{x \ln 3}$$

$$e. \frac{\ln x + 1}{\ln 2}$$

$$\mathbf{f.} \ \frac{4x+1-x\ln(3x^2)}{2x\ln 5(x+1)^{\frac{3}{2}}}$$

5.
$$y = 1.434x - 4.343$$

6.
$$y = \log_a kx$$
$$\frac{dy}{dx} = \frac{f'(x)}{f(x)\ln(a)}$$

$$= \frac{k}{kx \ln(a)}$$
$$= \frac{1}{kx \ln(a)}$$

$$=\frac{1}{x\ln(a)}$$

7.
$$y = 49.1x - 235.5$$

8. Since the derivative is positive at t = 15, the distance is increasing at that point.

9. a.
$$y = 0.1x + 1.1$$

vertical asymptote at x = 0

c. The tangent line will intersect this asymptote because it is defined for x = 0.

10. D = $\{x \in \mathbb{R} | x < -2 \text{ or } x > 2\};$ critical number at x = 0, x = 2, and x = -2; function is decreasing for x < -2 and increasing for x > 2

11. a. point of inflection at x = 0

b. x = 0 is a possible point of inflection. Since the graph is always concave up, there is no point of inflection.

12. The slope of $y = \log_3 x$ at (1, 0) is $\frac{1}{\ln 3}$. Since $\ln 3 > 1$, the slope of $y = 3^x$ at (0, 1) is greater than the slope of $y = \log_3 x$ at (1, 0).

Logarithmic Differentiation,

1. a.
$$\sqrt{10}x^{\sqrt{10}-1}$$

b.
$$15\sqrt{2} x^{3\sqrt{2}-1}$$

c. $\pi t^{\pi-1}$

c.
$$\pi t^{\pi-1}$$

d.
$$ex^{e-1} + e^x$$

2. a.
$$\frac{2x^{\ln x} \ln x}{2}$$

b.
$$\frac{(x+1)(x-3)^3}{(x+2)^3} \times \left(\frac{1}{x+1} + \frac{2}{x-3} - \frac{3}{x+2}\right)$$
c.
$$\left(x^{\sqrt{x}}\right) \frac{\ln x + 2}{2\sqrt{x}}$$

c.
$$\left(x^{\sqrt{x}}\right) \frac{\ln x + 2}{2\sqrt{x}}$$

d.
$$\left(\frac{1}{t}\right)^{t} \left(\ln \frac{1}{t} - 1\right)$$

3. a. $2e^{e}$
b. $e^{2} + e \cdot 2^{e-1}$
c. $-\frac{4}{27}$

b.
$$e^2 + e \cdot 2^{e-1}$$

c.
$$-\frac{4}{27}$$

4. $y = 32(2 \ln 2 + 1)(x - 128 \ln 2 - 48)$

5.
$$-\frac{1}{2}$$

6. $(e, e^{\frac{1}{e}})$

7. (1, 1) and $(2, 4 + 4 \ln 2)$

8.
$$\frac{32 (\ln 4 + 1)^2}{\ln 4 + 2}$$
9.
$$\frac{1}{8}$$

$$10. \quad \left(\frac{x \sin x}{x^2 - 1}\right)^2$$

$$(2 (\sin x + x \cos x) \qquad 4x$$

$$\times \left(\frac{2\left(\sin x + x\cos x\right)}{x\sin x} - \frac{4x}{x^2 - 1}\right)$$
11. $x^{\cos x} \left(\sin x \ln x + \frac{\cos x}{x}\right)$

12.
$$y = x$$

13. a.
$$v(t) = t^{\frac{1}{t}} \left(\frac{1 - \ln t}{t^2} \right),$$

$$a(t) = \frac{t^{\frac{1}{t}}}{t^4} [1 - 2 \ln t + (\ln t)^2 + 2t \ln t - 3t]$$

b.
$$t = e$$
; $a(e) = -e^{\frac{1}{e}-3}$

14. Using a calculator, $e^{\pi} \doteq 23.14$ and $\pi^e \doteq 22.46$. So, $e^{\pi} > \pi^e$.

Vector Appendix

Gaussian Elimination. pp. 588-590

1. a.
$$\begin{bmatrix} 1 & 2 & -1 & | & -1 \\ -1 & 3 & -2 & | & -1 \\ 0 & 3 & -2 & | & -3 \end{bmatrix}$$

b.
$$\begin{bmatrix} 2 & 0 & -1 & 1 \\ 0 & 2 & -1 & 16 \\ -3 & 1 & 0 & 10 \end{bmatrix}$$

c.
$$\begin{bmatrix} 2 & -1 & -1 & | & -2 \\ 1 & -1 & & 4 & | & -1 \\ -1 & -1 & & 0 & | & 13 \end{bmatrix}$$

2. Answers may vary. For example:

$$\begin{bmatrix} 1 & 1.5 & 0 \\ 0 & -5.5 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 2 & 3 & 0 \\ 0 & -5.5 & 1 \end{bmatrix}$$

3. Answers may vary. For example:

$$\begin{bmatrix} 2 & 1 & 6 & 0 \\ 0 & -2 & 1 & 0 \\ 0 & 0 & -37 & 4 \end{bmatrix}$$

4. a. Answers may vary. For example:

$$\begin{bmatrix} 1 & 0 & -1 & -1 \\ 0 & -1 & 2 & 0 \\ 0 & 0 & -36 & 16 \end{bmatrix}$$

b.
$$x = -\frac{22}{9}, y = -\frac{8}{9}, z = -\frac{4}{9}$$

5. a.
$$x - 2y = -1$$

 $2x - 3y = 1$
 $2x - y = 0$

b.
$$-2x - z = 0$$

$$x - 2y = 4$$

$$y + 2z = -3$$

$$y + 2z = -3$$
c. $-z = 0$
 $x = -2$

$$y + z = 0$$

6. **a.**
$$x = -\frac{9}{2}, y = -3$$

b.
$$x = 13, y = 9, z = -6$$

c. no solution

d.
$$x = -\frac{9}{4}, y = -4, z = -5$$