Chapter Review

FREQUENTLY ASKED Questions

Study **Aid**

- See Lesson 1.4, Examples 2, 3, and 4.
- Try Chapter Review
- Questions 7, 8, and 9.

Q: In what order are transformations performed on a function?

A: All stretches/compressions (vertical and horizontal) and reflections can be applied at the same time by multiplying the *x*- and *y*-coordinates on the parent function by the appropriate factors. Both vertical and horizontal translations can then be applied by adding or subtracting the relevant numbers to the *x*- and *y*-coordinates of the points.

Q: How do you find the inverse relation of a function?

A: You can find the inverse relation of a function numerically, graphically, or algebraically.

To find the inverse relation of a function numerically, using a table of values, switch the values for the independent and dependent variables.

f(x)	f ⁻¹		
(<i>x</i> , <i>y</i>)	(<i>y</i> , <i>x</i>)		

To find the inverse relation graphically, reflect the graph of the function in the line y = x. This is accomplished by switching the *x*- and *y*-coordinates in each ordered pair.

To find the algebraic representation of the inverse relation, interchange the positions of the *x*- and *y*-variables in the function and solve for *y*.

Study Aid

- See Lesson 1.5, Examples 1, 2, and 3.
- Try Chapter Review
- Questions 10 to 13.

Q: Is an inverse of a function always a function?

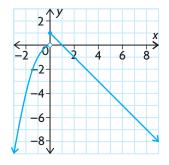
A: No; if an element in the domain of the original function corresponds to more than one number in the range, then the inverse relation is not a function.

Q: What is a piecewise function?

A: A piecewise function is a function that has two or more function rules for different parts of its domain.

For example, the function defined by $f(x) = \begin{cases} -x^2, & \text{if } x < 0 \\ -x + 1, & \text{if } x \ge 0 \end{cases}$

consists of two pieces. The first equation defines half of a parabola that opens down when x < 0. The second equation defines a decreasing line with a *y*-intercept of 1 when $x \ge 0$. The graph confirms this.



Q: If you are given the graphs or equations of two functions, how can you create a new function?

A: You can create a new function by adding, subtracting, or multiplying the two given functions.

This can be done graphically by adding, subtracting, or multiplying the *y*-coordinates in each pair of ordered pairs that have identical *x*-coordinates.

This can be done algebraically by adding, subtracting, or multiplying the expressions for the dependent variable and then simplifying.

Study Aid

- See Lesson 1.7.
- Try Chapter Review
- Questions 18 to 21.

Study **Aid**

• See Lesson 1.5, Examples 1, 2, and 3.

Chapter Review

• Try Chapter Review Questions 10 to 13.

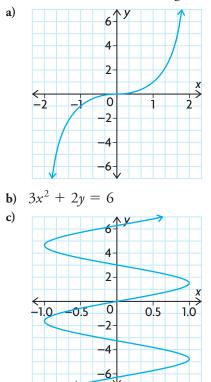
Study Aid

- See Lesson 1.6, Examples 1, 2, 3, and 4.
- Try Chapter Review Questions 14 to 17.

PRACTICE Questions

Lesson 1.1

1. Determine whether each relation is a function, and state its domain and range.



d) $x = 2^{y}$

- **2.** A cell phone company charges a monthly fee of \$30, plus \$0.02 per minute of call time.
 - a) Write the monthly cost function, C(t), where t is the amount of time in minutes of call time during a month.
 - **b**) Find the domain and range of *C*.

Lesson 1.2

- **3.** Graph f(x) = 2|x + 3| 1, and state the domain and range.
- **4.** Describe this interval using absolute value notation.

Lesson 1.3

5. For each pair of functions, give a characteristic that the two functions have in common and a characteristic that distinguishes them.

a)
$$f(x) = x^2$$
 and $g(x) = \sin x$

b)
$$f(x) = \frac{1}{x}$$
 and $g(x) = x$

c)
$$f(x) = |x|$$
 and $g(x) = x^2$

- d) $f(x) = 2^x$ and g(x) = x
- **6.** Identify the intervals of increase/decrease, the symmetry, and the domain and range of each function.
 - a) f(x) = 3x
 - **b)** $f(x) = x^2 + 2$
 - c) $f(x) = 2^x 1$

Lesson 1.4

7. For each of the following equations, state the parent function and the transformations that were applied. Graph the transformed function.
a) y = |x + 1|

b)
$$y = -0.25\sqrt{3(x+7)}$$

- c) $y = -2 \sin(3x) + 1, 0 \le x \le 360^{\circ}$
- d) $y = 2^{-2x} 3$
- 8. The graph of $y = x^2$ is horizontally stretched by a factor of 2, reflected in the *x*-axis, and shifted 3 units down. Find the equation that results from the transformation, and graph it.
- **9.** (2, 1) is a point on the graph of y = f(x). Find the corresponding point on the graph of each of the following functions.

a)
$$y = -f(-x) + 2$$

b) $y = f(-2(x + 0)) - f(-2(x + 0))$

b)
$$y = f(-2(x+9)) - 7$$

c) $y = f(x-2) + 2$

c)
$$y = f(x - 2) + 2$$

d) $y = 0.3f(5(x - 3))$

a)
$$y = 0.5f(5(x - 5))$$

(e)
$$y = 1$$
 $f(1 = x)$
(f) $y = f(2(y = y))$

$$f(x) = \int (2(x - 0))$$

61

Chapter Review

Lesson 1.5

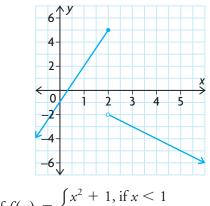
- **10.** For each point on a function, state the corresponding point on the inverse relation.
 - d) f(5) = 7a) (1, 2)**b**) (-1, -9)e) g(0) = -3f) h(1) = 10c) (0,7)
- **11.** Given the domain and range of a function, state the domain and range of the inverse relation.
 - a) $D = \{x \in \mathbf{R}\}, R = \{y \in \mathbf{R} | -2 < y < 2\}$
 - **b**) $D = \{x \in \mathbf{R} | x \ge 7\}, R = \{y \in \mathbf{R} | y < 12\}$
- **12.** Graph each function and its inverse relation on the same set of axes. Determine whether the inverse relation is a function. a) $f(x) = x^2 - 4$ **b**) $g(x) = 2^x$
- **13.** Find the inverse of each function. a) f(x) = 2x + 1**b**) $g(x) = x^3$

Lesson 1.6

14. Graph the following function. Determine whether it is discontinuous and, if so, where. State the domain and the range of the function.

$$f(x) = \begin{cases} 2x, \text{ if } x < 1\\ x+1, \text{ if } x \ge 1 \end{cases}$$

15. Write the algebraic representation for the following piecewise function, using function notation.



16. If
$$f(x) = \begin{cases} x^2 + 1, \text{ if } x < 1 \\ 3x, \text{ if } x \ge 1 \\ \text{ is } f(x) \text{ continuous at } x = 1 \text{? Explain.} \end{cases}$$

- **17.** A telephone company charges \$30 a month and gives the customer 200 free call minutes. After the 200 min, the company charges \$0.03 a minute.
 - Write the function using function notation. a)
 - **b**) Find the cost for talking 350 min in a month.
 - c) Find the cost for talking 180 min in a month.

Lesson 1.7

- **18.** Given $f = \{(0, 6), (1, 3), (4, 7), (5, 8)\}$ and $g = \{(-1, 2), (1, 4), (2, 3), (4, 8), (8, 9)\},\$ determine the following.
 - a) f(x) + g(x)
 - **b**) f(x) g(x)
 - c) [f(x)][g(x)]
- **19.** Given $f(x) = 2x^2 2x, -2 \le x \le 3$ and $g(x) = -4x, -3 \le x \le 5$, graph the following. d) f - ge) fg**a**) *f* **b**) g c) f + g

20. $f(x) = x^2 + 2x$ and g(x) = x + 1. Match the answer with the operation.

Answer:		Operation:			
a)	$x^3 + 3x^2 + 2x$	$\mathbf{A} f(x) + g(x)$			
b)	$-x^2 - x + 1$	$\mathbf{B} f(x) = g(x)$			
c)	$x^2 + 3x + 1$	C $g(x) - f(x)$			
d)	$x^2 + x - 1$	D $f(x) \times g(x)$			

21. $f(x) = x^3 + 2x^2$ and g(x) = -x + 6, a) Complete the table.

x	-3	-2	-1	0	1	2
<i>f</i> (<i>x</i>)						
g(x)						
(f+g)(x)						

- **b**) Use the table to graph f(x) and g(x) on the same axes.
- c) Graph (f + g)(x) on the same axes as part b).
- d) State the equation of (f + g)(x).
- e) Verify the equation of (f + g)(x) using two of the ordered pairs in the table.

Chapter 1