

Chapter Polynomial **Functions GOALS** You will be able to • Identify and describe key characteristics of polynomial functions • Divide one polynomial by another polynomial • Factor polynomial expressions Solve problems that involve polynomial equations and inequalities graphically and algebraically A fractal object displays properties of self-similarity. The fractal shown was created using a computer, the polynomial function $f(z) = 35z^9 - 180z^7 +$ $378z^5 - 420z^3 + 315z$, and a process called iteration. How can you estimate the number of zeros that this polynomial function has?

Study **Aid**

• For help, see the Review of Essential Skills found at the **Nelson Advanced Functions** website.

Question	Appendix
1	R-2
2	R-3
3	R-6
4	R-8
5	R-9

SKILLS AND CONCEPTS You Need

1. Expand and simplify each of the following expressions.

a)
$$2x^2(3x-11)$$

c)
$$4x(2x-5)(3x+2)$$

b)
$$(x-4)(x+6)$$

d)
$$(5x-4)(x^2+7x-8)$$

2. Factor each of the following expressions completely.

a)
$$x^2 + 3x - 28$$

b)
$$2x^2 - 18x + 28$$

3. Solve each of the following equations. Round your answer to two decimal places, if necessary.

a)
$$3x + 7 = x - 5$$

c)
$$x^2 + 11x + 24 = 0$$

b)
$$(x+3)(2x-9)=0$$

d)
$$6x^2 + 22x = 8$$

4. Describe the transformations that must be applied to $y = x^2$ to create the graph of each of the following functions.

a)
$$y = \frac{1}{4}(x-3)^2 + 9$$
 b) $y = \left(\frac{1}{2}x\right)^2 - 7$

$$\mathbf{b)} \quad y = \left(\frac{1}{2}x\right)^2 - 7$$

5. Write the equation of each function shown below.

6. Graph each of the following functions.

a)
$$y = 3(x+5)^2 - 4$$

b)
$$y = 2x^2 - 12x + 5$$

7. Use finite differences to classify each set of data as linear, quadratic, or other.

х	У		
-2	56.4		
-1	50.6		
0	45		
1	39.6		
2	34.4		
	-2 -1 0		

b)	х	У
	-2	11
	-1	5
	0	2
	1	7
	2	13

c)	х	У
	-2	2
	-1	6
	0	18
	1	54
	2	162

d)	х	У
	-2	7
	-1	6.5
	0	6
	1	5.5
	2	5

8. Create a concept web that shows the connections between each of the following for the function $f(x) = 3x^2 + 24x + 36$: the *y*-intercept, factored form, vertex form, axis of symmetry, direction of opening, zeroes, minimum value, value of the discriminant, and translations of the parent function.

On each arrow, write a brief description of the process you would use to obtain the information.

APPLYING What You Know

Examining Patterns

In the late 18th century, seven-year-old Carl Friedrich Gauss noticed a pattern that allowed him to determine the sum of the numbers from 1 to 100 very quickly. He realized that you could add 1 and 100, and then multiply by half of the largest number (50) to get 5050.

- ? Are there formulas for calculating the sum of the first *n* natural numbers and the sums of consecutive squares of natural numbers?
- **A.** Copy and complete each table, then calculate the **finite differences** until they are constant.
- **B.** Graph each relationship in part A on graph paper.
- **C.** Use your graphs and finite differences to make a **conjecture** about the type of model that would fit the data in each table (linear, quadratic, or other).
- **D.** Use a graphing calculator and the regression operation to verify your conjectures in part C.
- **E.** Use the equations you found in part D to calculate the sum of the first five natural numbers and the sum of the squares of the first five natural numbers.
- **F.** Verify that your calculations in part E are correct by comparing your sums with the values in both tables when n = 5.
- **G.** Use the equation you found to verify that the sum of the natural numbers from 1 to 100 is 5050.
- **H.** Use the equation you found to determine the sum of the squares of the natural numbers from 1 to 100.

YOU WILL NEED

• graph paper

Table 1

n	Sum up to <i>n</i> (<i>f</i> (<i>n</i>))
1	1
2	1 + 2 = 3
3	1 + 2 + 3 = 6
4	
5	
6	
7	
8	
9	
10	

Table 2

	Sum of the squares up to n^2
n	(g(n))
1	1
2	$1^2 + 2^2 = 5$
3	$1^2 + 2^2 + 3^2 = 14$
4	
5	
6	
7	
8	
9	
10	