Multiple Choice

Chapters

1. What is the domain of the function

$$f(x) = \frac{2}{5-x}$$

- a) $\{x \in \mathbb{R} | x \neq -5\}$ c) $\{x \in \mathbb{R} | x \neq 0\}$ b) $\{x \in \mathbb{R} | x \neq 5\}$ d) $\{x \in \mathbb{R}\}$
- 2. Which of these relations is *not* a function of *x*?
 - a) $x = -y^2$ b) $y = 2x^2$ c) $y = \sqrt{x-3}$ d) x + y = 3
- 3. Which function can be represented by this graph?

a)
$$f(x) = |2x| - 4$$
 c) $f(x) = |2x - 4|$
b) $f(x) = \left|\frac{1}{2}x - 2\right|$ d) $f(x) = |2x| + 4$

- 4. Which best describes
 - f(x) = (x 2)(x + 2)?a) odd c) neither a) nor b) b) even d) both a) and b)
- 5. What transformations were applied to y = |x| to obtain the equation $y = \left|\frac{1}{3}(x-2)\right|$?
 - a) horizontal compression by a factor of $\frac{1}{3}$, horizontal translation 2 units to the left
 - b) horizontal stretch by a factor of 3, horizontal translation 2 units to the right
 - c) horizontal translation 2 units to the right, horizontal stretch by a factor of 3
 - d) horizontal translation 2 units to the right, horizontal compression by a factor of $\frac{1}{3}$
- **188** Cumulative Review

6. What is the equation of the parent function

of
$$f(x) = \frac{2}{x-2} - 4$$
?
a) $g(x) = 2^x$ c) $g(x) =$
b) $g(x) = \frac{2}{x}$ d) $g(x) =$

Cumulative Review

7. The graph of $y = 2^x$ is stretched horizontally by a factor of 5, and then translated 3 units down. Which of the following is the resulting equation?

 x^2

 $\frac{1}{x}$

a)
$$f(x) = 2^{5(x-3)}$$

b) $f(x) = 2^{\frac{1}{5}(x+3)}$
c) $f(x) = 5^x - 3$
d) $f(x) = 2^{(\frac{1}{5}x)} - 3$

- 8. Which function has an inverse with the domain {x ∈ R | x ≥ 5}?
 a) y = 2x² + 5 c) y = 2|x| 5
 b) y = 2(x 5)² d) y = 2|x + 5|
- 9. Which relation is the inverse of $f(x) = 2x^2 4$? a) $y = \sqrt{2(x - 4)}$ b) $y = \pm \sqrt{2(x - 4)}$ c) $y = \pm \sqrt{\frac{x + 4}{2}}$ d) $y = \sqrt{\frac{x + 4}{2}}$
- **10.** Which function is *not* continuous?

a)
$$f(x) =\begin{cases} 2x, \text{ if } x < 1\\ x + 1, \text{ if } x \ge 1 \end{cases}$$

b) $f(x) =\begin{cases} (x - 2)^2, \text{ if } x \le 2\\ \sqrt{x - 2}, \text{ if } x > 2 \end{cases}$
c) $f(x) =\begin{cases} \frac{1}{x}, \text{ if } x < -1\\ -1, \text{ if } x \ge -1 \end{cases}$
d) $f(x) =\begin{cases} 2x + 1, \text{ if } x < 2\\ x + 2, \text{ if } x \ge 2 \end{cases}$

- 11. What is the average rate of change of the function f(x) = x³ 2x² + 7 over the interval -1 ≤ x ≤ 3?
 a) 3 b) 4 c) 12 d) -3
- 12. Kristin and Husain are growing crystal gardens. Both of them started with a small seed crystal, which had a mass of about 0.1 g. In 3 days, Kristin's crystal grew to a mass of 5 g. In 10 days, Husain's crystal grew to a mass of 15 g. Whose crystal grew faster?
 - a) Kristin's
 - **b**) Husain's
 - c) The rates are equal.
 - d) There is not enough information to decide.
- **13.** A submarine is descending from the surface. What is the best estimate of its instantaneous change in depth at t = 3 s?

Time, <i>t</i> (s)	Depth (m)		15.0 /
3	27	a)	15.2 m/s
3.001	27.015002	D)	15.002 m/s
3.01	27.1502	d)	17 m/s 17 m/s
3.1	28.52	·	17 111/5
4	44		

- **14.** What is the best estimate of the instantaneous rate of change of $f(x) = 2^x 2x + 1$ at x = -1? **a**) -1.5 **b**) -3.5 **c**) -1.625 **d**) -1.65
- 15. For the following graph, what is the best estimate of the slope of the tangent at x = 2?

16. An athlete runs the first lap of a race slightly faster than the next two laps, and then runs the final lap the fastest. Which graph is the correct distance versus time graph for the athlete's run?

- **17.** At x = 5, the function $f(x) = 13x 1.3x^2 + 7.3$ has
 - a) a maximum
 - **b**) a minimum
 - c) both a maximum and a minimum
 - d) neither a maximum nor a minimum
- 18. For the function f(x) = 2x² 3x + 9, what is the correct expression for the value of the difference quotient on the interval 3 ≤ x ≤ 3 + h?
 a) 2h² 3h
 b) 4h 3
 - **b)** 4h + 9 **c)** 2h + 9
- **19.** For the growth equation $y = 35(1.7)^x$, the maximum value over the domain $0 \le x \le 8$ is **a)** y = 1.7 **c)** y = 69.7
 - **b**) y = 2441.5 **d**) y = 35
- **20.** Which equation does *not* represent a polynomial function?
 - a) $f(x) = x^2 + 2$
 - **b**) f(x) = (x+1)(x-2)(x-3)(x-4)
 - c) $f(x) = 2^x 3$
 - d) f(x) = 3x 2
- **21.** Which type of polynomial function *cannot* be represented by the following graph?

- a) quadratic
- **b**) cubic
- c) quartic with three turning points
- d) quartic with one turning point

- **22.** Which statement is true for any cubic polynomial function?
 - a) As $x \to \pm \infty$, $y \to \infty$.
 - **b**) As $x \to \pm \infty$, the signs of *y* are opposite.
 - c) As $x \to \pm \infty$, $y \to -\infty$.
 - d) As $x \to \pm \infty$, the signs of y are same.
- **23.** Which function could be represented by the following graph?

- a) $y = 0.1x^2(x-3)^2$ b) $y = -0.1x(x-3)^2$ c) y = -0.1x(x-3)d) $y = -0.1x^2(x+3)$
- 24. Which quartic function has zeros at -2, 0, 1, and 3, and satisfies f(2) = 16? a) $f(x) = -2x^4 + 4x^3 + 10x^2 - 12x$ b) $f(x) = 2x^4 - 4x^3 - 10x^2 + 12x$
 - b) $f(x) = 2x^{4} 4x^{2} 10x^{4} + 12x^{4}$ c) $f(x) = 2x^{4} + 4x^{3} - 10x^{2} - 12x^{4}$
 - d) $f(x) = -2x^4 4x^3 + 10x^2 + 12x$
- **25.** $y = x^3$ is stretched horizontally by a factor of 2, and then translated horizontally 3 units to the right. What is the equation of the resulting graph?

a)
$$y = (2(x+3))^3$$
 b) $y = (\frac{1}{2}x)^3 - 3$ **c**) $y = (\frac{1}{2}(x-3))^3$
b) $y = (\frac{1}{2}x)^3 - 3$ **d**) $y = (2x-3)^3$

26. $x^3 - 2x^2 + 7x + 12$ is divided by $x^2 - 3x + 4$. What is the remainder? **a)** $x^2 + 3x + 8$ **c)** 6x + 8**b)** x + 4 **d)** -3x + 4

- 27. What is the remainder when x + 3 is divided into x⁴ 5x² + 12x + 16?
 a) 196
 c) -2
 - **b**) 88 **d**) 16
- **28.** The polynomial $2x^3 + kx^2 3x + 18$ has x 3 as one of its factors. What is the value of k?

a)	4	c)	-2
b)	-7	d)	2

- **29.** What is $27x^3 216$ in factored form?
 - a) $3(x-2)(x^2+2x+4)$
 - **b**) $27(x+2)(x^2-2x+4)$
 - c) $27(x-2)(x^2+2x+4)$
 - d) $(3x+6)(9x^2-18x+36)$
- **30.** What are the factors of $(x + 3)^3 + 8$? **a)** $(x^3 + 27)(8)$
 - b) $(x+3)(x^2-3x+17)$
 - c) $(x+5)(x^2+4x+7)$
 - d) $(x+1)(x^2-4x+7)$
- **31.** The following container is being filled with water at a constant rate. Which graph shows the height of the water level versus time?

Investigations

Investigating Transformations of a Quadratic and its Inverse

- **32.** a) Sketch the graphs of the parent function $f(x) = x^2$ and its inverse.
 - **b**) Apply various transformations to the graph of the parent function. Draw the graph of the inverse of each transformed function.
 - c) Describe how you could modify each transformed inverse you drew in part b) to make it into a function.

Investigating Rates of Change in a Cubic Function

33. Investigate various rates of change of the function $f(x) = x^3 - 6x^2 + 9x + 1$. Your investigation should include average rates of change and estimated rates of change at different points, including any maximum or minimum points.

Graphing a Polynomial Function

- 34. a) Determine the equation of $f(x) = k(x + 1)^2(x 2)(x 4)$, if (1, -24) is a point on the graph of f(x).
 - **b**) Solve for *p* if (3, p) is a point on the graph of f(x).
 - c) State the end behaviours and the zeros of f(x).
 - d) Determine the *y*-intercept of f(x).
 - e) Use all the characteristics you determined to sketch a possible graph of f(x).