Flight of an Osprey

An observer in a fishing boat watched as an osprey dove under water and re-emerged with a fish in its talons. The following table shows the bird's estimated height above the water as given by that observer.

Time (s)	Height (m)
0	7
2	10
4	5
6	0
7	0
8	3

Is the osprey travelling at its greatest speed when it hits the water?

- **A.** Plot the given data on graph paper. What type of function best models these data?
- **B.** Without using graphing technology, determine an equation to model the data and state a suitable domain.
- **C.** Describe the osprey's flight, making reference to your graph and equation. Include information about the time, its height, direction of flight, and relative rate of ascent and descent (faster/slower).
- **D.** According to your model, how long was the osprey under water? Does this seem reasonable? Explain.
- **E.** According to your model, when was the osprey more than 6 m above the water?
- **F.** Use your model to estimate the rate at which the osprey's height is changing at the time it hits the water.
- **G.** Using tangent lines on your graph, do you think the rate you calculated in part F is the greatest at this point? Explain.
- **H.** Check your result for part F using graphing technology by creating a scatter plot, determining the equation of the curve of best fit, and using it to find the slope of the appropriate tangent line.
- I. Use the graphing calculator and the graph you created in part H to help you determine when the osprey's rate of change in height was greatest between 0 s and 8 s.

Task Checklist

- Did you explain your thinking clearly?
- Did you justify your answers mathematically?
- Did you show all work and calculations?
- Did you check your calculations?
- Did you label your work properly?