Exploring Graphs of the Primary Trigonometric Functions

GOAL

6.3

Use radians to graph the primary trigonometric functions.

EXPLORE the Math

The unit circle is a circle that is centred at the origin and has a radius of 1 unit. On the unit circle, the sine and cosine functions take a particularly simple form: $\sin \theta = \frac{y}{1} = y$ and $\cos \theta = \frac{x}{1} = x$. The value of $\sin \theta$ is the *y*-coordinate of each point on the circle, and the value of $\cos \theta$ is the *x*-coordinate. As a result, each point on the circle can be represented by the ordered pair $(x, y) = (\cos \theta, \sin \theta)$, where θ is the angle formed between the positive *x*-axis and the terminal arm of the angle that passes through each point. For example, the point $\left(\cos \frac{\pi}{6}, \sin \frac{\pi}{6}\right)$ lies on the terminal arm of the angle $\frac{\pi}{6}$. Evaluating each trigonometric expression using the special triangles results in the ordered pair $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$. Repeating this process for other angles between 0 and 2π results in the following diagram:

YOU WILL NEED

graph paper

What do the graphs of the primary trigonometric functions look like when θ is expressed in radians?

A. Copy the following table. Complete the table using a calculator and the unit circle shown to approximate each value to two decimal places.

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
sin θ									
$\cos \theta$									
									1
θ	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	<u>11π</u> 6	2π	
sin θ									
$\cos \theta$									

- **B.** Plot the ordered pairs $(\theta, \sin \theta)$, and sketch the graph of the function $y = \sin \theta$. On the same pair of axes, plot the ordered pairs $(\theta, \cos \theta)$ and sketch the graph of the function $y = \cos \theta$.
- **C.** State the domain, range, amplitude, equation of the axis, and period of each function.
- **D.** Recall that $\tan \theta = \frac{\sin \theta}{\cos \theta}$. Use the values from your table for part A to calculate the value of $\tan \theta$. Use a calculator to confirm your results, to two decimal places.

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
$\frac{\sin\theta}{\cos\theta}$									
	7π	5π	4π	3π	5π	7π	11π	•	

θ	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$	2π
$\frac{\sin\theta}{\cos\theta}$								

- **E.** What do you notice about the value of the tangent ratio when $\cos \theta = 0$? What do you notice about its value when $\sin \theta = 0$?
- **F.** Based on your observations in part E, what characteristics does this imply for the graph of $y = \tan \theta$?
- **G.** What do you notice about the value of the tangent ratio when $\theta = \pm \frac{\pi}{4}, \pm \frac{3\pi}{4}, \pm \frac{5\pi}{4}$, and $\pm \frac{7\pi}{4}$? Why does this occur?

- **H.** On a new pair of axes, plot the ordered pairs $(\theta, \tan \theta)$ and sketch the graph of the function $y = \tan \theta$, where $0 \le \theta \le 2\pi$.
- I. Determine the domain, range, amplitude, equation of the axis, and period of this function, if possible.

Reflecting

- J. The tangent function is directly related to the slope of the line segment that joins the origin to each point on the unit circle. Explain why.
- **K.** Where are the vertical asymptotes for the tangent graph located when $0 \le \theta \le 2\pi$, and what are their equations? Explain why they are found at these locations.
- **L.** How does the period of the tangent function compare with the period of the sine and cosine functions?

In Summary

Key Idea

• The graphs of the primary trigonometric functions can be summarized as follows:

FURTHER Your Understanding

- **1.** a) Examine the graphs of $y = \sin \theta$ and $y = \cos \theta$. Create a table to compare their similarities and differences.
 - **b**) Repeat part a) using the graphs of $y = \sin \theta$ and $y = \tan \theta$.
- a) Use a graphing calculator, in radian mode, to create the graphs of the trigonometric functions y = sin θ and y = cos θ on the interval -2π ≤ θ ≤ 2π. To do this, enter the functions Y1 = sin θ and Y2 = cos θ in the equation editor, and use the window settings shown.
 - **b**) Determine the values of θ where the functions intersect.
 - c) The equation $t_n = a + (n 1)d$ can be used to represent the general term of any arithmetic sequence, where *a* is the first term and *d* is the common difference. Use this equation to find an expression that describes the location of each of the following values for $y = \sin \theta$, where $n \in \mathbf{I}$ and θ is in radians.
 - i) θ -intercepts
 - ii) maximum values
 - iii) minimum values
- **3.** Find an expression that describes the location of each of the following values for $y = \cos \theta$, where $n \in \mathbf{I}$ and θ is in radians.
 - a) θ -intercepts b) maximum values c) minimum values
- **4.** Graph $y = \frac{\sin \theta}{\cos \theta}$ using a graphing calculator in radian mode. Compare your graph with the graph of $y = \tan \theta$.
- 5. Find an expression that describes the location of each of the following values for y = tan θ, where n ∈ I and θ is in radians.
 a) θ-intercepts
 b) vertical asymptotes

