FREQUENTLY ASKED Questions

Q: How are radians and degrees related?

- A: Radians are determined by the relationship $\theta = \frac{a}{r}$, where θ is the angle subtended by arc length *a* in a circle with radius *r*. One revolution creates an angle of 360°, or 2π radians. Since $360^\circ = 2\pi$ radians, it follows that $180^\circ = \pi$ radians. This relationship can be used to convert between the two measures.
 - To convert from degrees to radians, multiply by $\frac{\pi}{180^{\circ}}$.
 - To convert from radians to degrees, either substitute 180° for π or multiply by $\frac{180^{\circ}}{\pi}$.

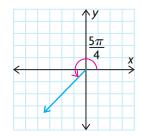
Here are three examples:

$75^\circ = 75^\circ \times \frac{\pi}{180^\circ}$	$\frac{5\pi}{4} = \frac{5(180^{\circ})}{4}$	3 radians = $\frac{3(180^\circ)}{\pi}$
$=\frac{5\pi}{12}$	= 225°	$\doteq 171.887^{\circ}$

Q: How do you determine exact values of trigonometric ratios for multiples of special angles expressed in radians?

A: An angle on the Cartesian plane is determined by rotating the terminal arm in either a clockwise or counterclockwise direction. The special triangles can be used to determine the coordinates of a point that lies on the terminal arm of the angle. Then, using the *x*, *y*, *r* trigonometric definitions and the related angle, the exact values of the trigonometric ratios can be evaluated for multiples of angles $\frac{\pi}{3}, \frac{\pi}{4}$, and $\frac{\pi}{6}$.

For example, to determine the exact value of $\sec \frac{5\pi}{4}$, sketch the angle in standard position. Determine the related angle. Since the terminal arm of $\frac{5\pi}{4}$ lies in the third quadrant, the related angle is $\frac{5\pi}{4} - \pi = \frac{\pi}{4}$.

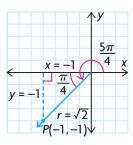


Study Aid

- See Lesson 6.1, Examples 1, 2, and 3.
- Try Mid-Chapter Review Questions 1, 2, and 3.

Study Aid

- See Lesson 6.2, Example 3.
- Try Mid-Chapter Review
- Questions 4 and 6.



Study **Aid**

- See Lesson 6.4, Example 3.
- Try Mid-Chapter Review
- Questions 8 and 9.

Sketch the 1, 1, $\sqrt{2}$ special triangle by drawing a vertical line from the point (-1, -1) on the terminal arm to the negative *x*- axis. Use the values of *x*, *y*, and *r* and the appropriate ratio to determine the value.

$$\sec \frac{5\pi}{4} = \frac{r}{x}$$
$$= \frac{\sqrt{2}}{-1}$$
$$= -\sqrt{2}$$

Q: How can transformations be used to graph sinusoidal functions?
 A: The graphs of functions of the form f(u) = usin (h(u - d)) +

A: The graphs of functions of the form $f(x) = a \sin (k(x - d)) + c$ and $f(x) = a \cos (k(x - d)) + c$ are transformations of the parent functions $y = \sin (x)$ and $y = \cos (x)$, respectively.

In sinusoidal functions, the parameters *a*, *k*, *d*, and *c* give the transformations to be applied, as well as the key characteristics of the graph.

- |*a*| gives the vertical stretch/compression factor and the amplitude of the function.
- $\left|\frac{1}{k}\right|$ determines the horizontal stretch/compression factor, and $\left|\frac{2\pi}{k}\right|$ gives the period of the function.
- When *a* is negative, the function is reflected in the *x*-axis. When *k* is negative, the function is reflected in the *y*-axis.
- *d* gives the horizontal translation.
- c gives the vertical translation, and y = c gives the equation of the horizontal axis of the function.

To sketch these functions, begin with the key points of the parent function. Apply any stretches/compressions and reflections first, and then follow them with any translations.

Alternatively, use the equation of the axis, amplitude, and period to sketch a graph of the form $f(x) = a \sin(x) + c$ or $f(x) = a \cos(x) + c$. Then apply the horizontal translation to the points of this graph, if necessary.

PRACTICE Questions

Lesson 6.1

1. Convert each angle from radians to degrees. Express your answer to one decimal place, if necessary.

a)
$$\frac{\pi}{8}$$
 c) 5
b) 4π d) $\frac{11\pi}{12}$

- **2.** Convert each angle from degrees to radians. Express your answer to one decimal place, if necessary.
 - a) 125° d) 330° b) 450° e) 215° c) 5° f) -140°
- **3.** A tire with a diameter of 38 cm rotates 10 times in 5 s.
 - a) What is the angle that the tire rotates through, in radians, from 0 s to 5 s?
 - **b**) Determine the angular velocity of the tire.
 - c) Determine the distance travelled by a pebble that is trapped in the tread of the tire.

Lesson 6.2

4. Sketch each angle in standard position, and then determine the exact value of the trigonometric ratio.

a)
$$\sin \frac{3\pi}{4}$$

b) $\sin \frac{11\pi}{6}$
c) $\tan \frac{5\pi}{3}$
d) $\tan \frac{5\pi}{6}$
e) $\cos \frac{3\pi}{2}$
f) $\cos \frac{4\pi}{3}$

 The terminal arms of angles in standard position pass through the following points. Find the measure of each angle in radians, to the nearest hundredth.

a)
$$(-3, 14)$$
d) $(-5, -18)$ b) $(6, 7)$ e) $(2, 3)$ c) $(1, 9)$ f) $(4, -20)$

6. State an equivalent expression for each of the following expressions, in terms of the related acute angle.

a)
$$\sin\left(-\frac{7\pi}{6}\right)$$
 c) $\sec\left(-\frac{\pi}{2}\right)$
b) $\cot\frac{7\pi}{4}$ d) $\cos\left(-\frac{5\pi}{6}\right)$

Lesson 6.3

- **7.** State the *x*-intercepts and *y*-intercepts of the graph of each of the following functions.
 - a) $y = \sin x$
 - **b**) $y = \cos x$
 - c) $y = \tan x$

Lesson 6.4

- 8. Sketch the graph of each function on the interval $-2\pi \le x \le 2\pi$.
 - a) $y = \tan(x)$

b)
$$y = 2 \sin(-x) - 1$$

c) $y = \frac{5}{2} \cos\left(2\left(x + \frac{\pi}{4}\right)\right) + 3$

d)
$$y = -\frac{1}{2}\cos\left(\frac{1}{2}x - \frac{\pi}{6}\right)$$

e) $y = 2\sin\left(-3\left(x - \frac{\pi}{2}\right)\right) + 4$

f)
$$y = 0.4 \sin(\pi - 2x) - 2.5$$

9. The graph of the function $y = \sin x$ is transformed by vertically compressing it by a factor of $\frac{1}{3}$, reflecting it in the *y*-axis, horizontally compressing it by a factor of $\frac{1}{3}$, horizontally translating it $\frac{\pi}{8}$ units to the left, and vertically translating it 23 units down. Write the equation of the resulting graph.