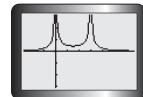

Chapters

Cumulative Review

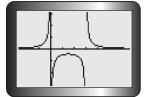
Multiple Choice

- 1. What are the solutions of $x^4 + 3x^3 = 4x^2 + 12x$?


- a) -2, 0, 3, 2b) -4, -3, 0c) -3, 0, 4d) -3, -2, 0, 2
- **2.** Which cubic function has zeros at -1, 1, and 4 and passes through (2, 36)?
 - a) f(x) = 2(x-1)(x+1)(x+4)
 - **b)** $f(x) = -6x^3 + 24x^2 + 6x 24$
 - c) $f(x) = 36x^3 144x^2 6x + 144$
 - d) f(x) = 6(x+1)(x-1)(x-4)
- **3.** Which value is *not* a solution of
 - 2 3x < x 5?
 - a) -2 b) 2
- **c**) 3
- **d**) 5
- **4.** What is the solution of $-10 \le 3x + 5 \le 8$?
 - a) $-5 \le x \le \frac{13}{3}$
- c) $-5 \le x \le 1$
- **b)** $x \in (-5, 1)$ **d)** $x \in \left[-\frac{5}{3}, 1 \right]$
- **5.** On which interval is f(x) < g(x)?

- a) x > 2
- c) $x \in (-\infty, 0)$
- **b)** x < 0 and x > 2 **d)** $x \in (0, 2)$
- **6.** The height in metres of a diver above the pool's surface is given by $h(t) = -5t^2 + 3.5t + 10$, where *t* is in seconds. When is the diver more than 10.0 m above the pool?
 - a) t < 1.5
- c) $t \in (0, 1)$
- **b**) $t \in (0, 0.7)$
- **d**) 0.7 < t < 1

- **7.** The instantaneous rate of change of a cubic function is positive for x < 0, negative for 0 < x < 2, and positive for x > 2. Which is not a possible set of zeros for the function?
 - a) x = 0, x = 1
 - **b)** x = -0.73, x = 1, x = 2.73
 - c) x = -3
 - d) x = -0.73, x = 2
- **8.** Which value is the best estimate of the instantaneous rate of change of the function $f(x) = 2x^3 - 4x^2 + 6x$ at the point (0, 0)?
 - **a)** -6.5 **b)** 0 **c)** 6.2 **d)** 5.5


- **9.** Which is the graph of $y = \frac{1}{x^2 3x}$?

b)

c)

d)

10. What type of asymptote(s) does

$$f(x) = \frac{1}{x^2 + 3x - 10}$$
 have?

- a) only vertical
- **b**) only horizontal
- c) both vertical and horizontal
- **d**) only oblique
- 11. Which function has a vertical asymptote at x = 3 and an oblique asymptote?

a)
$$f(x) = \frac{x-3}{x^2-9}$$
 c) $h(x) = \frac{x+3}{x-3}$

c)
$$h(x) = \frac{x+3}{x-3}$$

b)
$$g(x) = \frac{x^2 - 9}{x - 3}$$

b)
$$g(x) = \frac{x^2 - 9}{x - 3}$$
 d) $j(x) = \frac{x^2 + 9}{x - 3}$

12. Which function has domain $\{x \in \mathbb{R} | x \neq 3\}$ and is positive on $\{x \in \mathbb{R} | -2 < x < 3\}$?

a)
$$f(x) = \frac{x+2}{3-x}$$

a)
$$f(x) = \frac{x+2}{3-x}$$
 c) $h(x) = \frac{x-2}{x+3}$

b)
$$g(x) = \frac{x+2}{x-3}$$
 d) $j(x) = \frac{2-x}{x+3}$

$$\mathbf{d)} \ \ j(x) = \frac{2-x}{x+3}$$

13. How does the function $f(x) = \frac{2-3x}{5x-3}$ behave as *x* approaches $\frac{3}{5}$ from the left?

a)
$$f(x) \to \infty$$

a)
$$f(x) \to \infty$$
 c) $f(x) \to \frac{1}{5}$
b) $f(x) \to 0$ d) $f(x) \to -\infty$

b)
$$f(x) \rightarrow 0$$

d)
$$f(x) \rightarrow -\infty$$

14. What is the solution of $\frac{3-2x}{x+2} = 3x$?

a)
$$x = 0, x = 1.5$$

c)
$$x = -3, x = \frac{1}{3}$$

b)
$$x = -2, x = 0$$

a)
$$x = 0, x = 1.5$$

b) $x = -2, x = 0$
c) $x = -3, x = \frac{1}{3}$
d) $x = -\frac{1}{3}, x = 3$

- **15.** When solving a rational equation such as $\frac{2-3x}{5x-3} = \frac{x+2}{5x}$, what is a possible first step?
 - a) Graph each side as a function.
 - **b**) Determine the zeros of the denominators.
 - Multiply all terms by the lowest common denominator.
 - d) any of the above

16. The inequality $2x - 3 \le \frac{2}{x}$ is equivalent to

a)
$$\frac{(2x+1)(x-2)}{x} \le 0$$

b)
$$\frac{x(2x-3)}{2} \le 1$$

c)
$$\frac{(2x-1)(x+2)}{x} \le 0$$

d)
$$\frac{(2x+1)(x-2)}{2} \le 0$$

17. For which interval(s) is the inequality

$$x - 3 > \frac{6}{x - 2}$$
 true?

a)
$$x \in (-\infty, 0)$$
 or $x \in (2, 5)$

b)
$$x \in (0, 5)$$

c)
$$x < 0 \text{ or } x > 5$$

d)
$$0 < x < 2 \text{ or } x > 5$$

18. What is the slope of the line tangent to

$$y = \frac{3-x}{2x}$$
 at $x = 1$?

a)
$$m = \frac{3}{2}$$
 c) $m = 3$

c)
$$m = 3$$

b)
$$m = -\frac{3}{2}$$
 d) $m = -3$

d)
$$m = -3$$

19. The position of an object moving along a straight line at time t seconds is given by

$$s(t) = \frac{2t+1}{t-4}$$
, where s is measured in metres.

Which is the best estimate for the rate of change of s at t = 3 s?

a)
$$-12 \text{ m/s}$$

c)
$$-9.6 \text{ m/s}$$

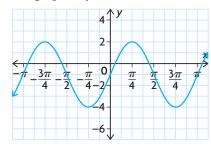
b)
$$-9 \text{ m/s}$$

d)
$$-7 \text{ m/s}$$

20. A sector of a circle with a radius of 3 m has a central angle of $\frac{5\pi}{12}$. What is the perimeter of the sector?

a)
$$6\frac{5}{24}$$
 m

a)
$$6\frac{5}{24}$$
 m c) $\frac{5\pi}{2} + 6$ m


b)
$$\frac{5\pi}{4} + 6 \text{ m}$$
 d) $\frac{5\pi}{4} \text{ m}$

d)
$$\frac{5\pi}{4}$$
 m

- **21.** Which of the following pairs of angles are equivalent?

 - a) 20° and $\frac{\pi}{9}$ c) -270° and $-\frac{3\pi}{2}$
 - **b**) 135° and $\frac{3\pi}{4}$
- **d**) all of the above
- **22.** The point (-4, 7) lies on the terminal arm of angle θ . What is the measure of θ in radians?
- **b**) 119.74
- c) 2.09
- **d**) 2.62
- **23.** If $\sin \theta = -\frac{\sqrt{3}}{2}$, what are possible values of $\cos \theta$ and $\tan \theta$?
 - a) $\cos \theta = \frac{1}{2}$, $\tan \theta = -\sqrt{3}$
 - **b**) $\cos \theta = -\frac{1}{2}$, $\tan \theta = -\sqrt{3}$
 - c) $\cos \theta = -\frac{1}{2}$, $\tan \theta = -\frac{1}{\sqrt{2}}$
 - d) $\cos \theta = -\frac{1}{2}$, $\tan \theta = \frac{1}{\sqrt{3}}$
- **24.** Which of the following values of x, where $x \in [0, 2\pi]$, satisfy $\sin x = 0.5$?

 - a) $\frac{\pi}{6}$ and $\frac{7\pi}{6}$ c) $\frac{\pi}{6}$ and $\frac{11\pi}{6}$
 - b) $\frac{\pi}{3}$ and $\frac{5\pi}{3}$ d) $\frac{\pi}{6}$ and $\frac{5\pi}{6}$
- **25.** What is the equation of this transformation of the graph of $y = \sin x$?

- a) $y = 3 \sin(2(x+1))$
- **b)** $y = 3 \sin(2x) 1$
- c) $y = 3 \sin\left(\frac{1}{2}x\right) 1$
- d) $y = 2 \sin(3x) 1$

- **26.** What transformations are needed to transform $y = \cos x$ into $y = \cos\left(\frac{1}{3}(x + 2\pi)\right)$?
 - a) horizontal compression by a factor of $\frac{1}{3}$, horizontal translation 2π units left
 - **b)** horizontal stretch by a factor of 3, horizontal translation 2π units left
 - c) vertical compression by a factor of $\frac{1}{3}$, vertical translation 2 units up
 - d) horizontal stretch by a factor of 3, horizontal translation 2π units left
- **27.** One blade of a wind turbine is at an angle of $-\frac{\pi}{4}$ to the upward vertical at time t = 0, and rotates counterclockwise one revolution every 2 seconds. The tip of the blade varies between 5 m and 41 m above the ground. Which equation is a model for the height, *h*, of the blade tip?
 - a) $h = 18 \cos \left(\pi t + \frac{\pi}{4} \right) + 23$
 - **b)** $h = 41 \cos \left(2\left(t + \frac{\pi}{4}\right)\right) 5$
 - c) $h = 18\cos\left(\pi t \frac{\pi}{4}\right) 23$
 - d) $h = 41 \cos \left(\pi \left(t + \frac{\pi}{4}\right)\right) 36$
- **28.** The instantaneous rate of change of $y = 2 \sin(3x - \pi)$ is negative on which of the following intervals?
 - a) $\frac{\pi}{2} < x < \frac{5\pi}{6}$ c) both a) and b)
 - b) $\frac{\pi}{2} < x < \frac{3\pi}{2}$ d) neither a) nor b)
- **29.** The population of blackflies at a lake in northern Ontario can be modelled by the function $P(t) = 23.7 \cos\left(\frac{\pi}{6}(t-7)\right) + 24.1$, where *P* is in millions and *t* is in months. Over which time interval is the average rate of change in the blackfly population the greatest?
 - a) $0 \le t \le 4$
- c) $7 \le t \le 16$
- **b**) $1 \le t \le 7$
- **d**) $10 \le t \le 18$

Investigations

The Greatest Volume

- **30.** An open top box is made by cutting corners out of a 50 cm by 40 cm piece of cardboard.
 - a) Determine a mathematical model that represents the volume of the box.
 - **b)** Determine the length of the sides of each square that must be cut that will result in a box with a volume of 6000 cm³.
 - c) Determine the length of the sides of each square that must be cut that will result in a box with maximum volume.
 - d) Determine a range of sizes of the squares that can be cut from each corner that will result in a box with a volume of at least 1008 cm³.

Combining Functions

31. Consider the polynomial functions

$$f(x) = x^2 - 5x + 6$$
 and $g(x) = x - 3$. Determine

a) the zeros of
$$f(x)$$
, $g(x)$, $\frac{f(x)}{g(x)}$, and $\frac{g(x)}{f(x)}$

- **b**) the holes and asymptotes of $\frac{f(x)}{g(x)}$ and $\frac{g(x)}{f(x)}$, if any
- c) any x-coordinate(s) where the tangents of $\frac{f(x)}{g(x)}$ and $\frac{g(x)}{f(x)}$ are perpendicular, and the equation(s) of the tangent(s) at such coordinates

Transformations of Trigonometric Functions

- **32.** a) Investigate the effect of various types of transformations (i.e., stretches/compressions, reflections, and translations) of $y = \sin x$ on its zeros, maximum and minimum values, and instantaneous rates of change.
 - **b**) Repeat part a) for $y = \cos x$ and $y = \tan x$.

NEL Chapters 4–6 383