Double Angle Formulas

• graphing calculator

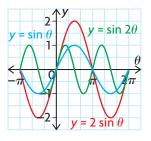
7.3

GOAL

Develop and use double angle formulas.

INVESTIGATE the Math

From your work with graphs of trigonometric functions, you already know that $f(\theta) = \sin 2\theta$ is not the same as $f(\theta) = 2 \sin \theta$.



 $f(\theta) = \sin 2\theta$ is the graph of $y = \sin \theta$ compressed horizontally by a factor of $\frac{1}{2}$.

 $f(\theta) = 2 \sin \theta$ is the graph of $y = \sin \theta$ stretched vertically by a factor of 2.

? How are the trigonometric ratios of an angle that has been doubled to 2θ related to the trigonometric ratios of the original angle θ ?

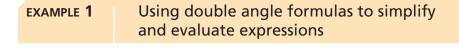
- **A.** Given sin $2\theta = \sin(\theta + \theta)$, use the appropriate compound angle formula to expand sin $(\theta + \theta)$. Simplify both sides to develop a formula for sin 2θ .
- **B.** Verify your double angle formula for sine by graphing each side as a function on a graphing calculator and examining the tables of values.
- **C.** Verify that your double angle formula for sine works by evaluating both sides of the formula for $\theta = 45^{\circ}$. Repeat for $\theta = \frac{\pi}{6}$.
- **D.** Repeat parts A to C to develop a double angle formula for $\cos 2\theta$.
- **E.** Use the identity $\sin^2 \theta + \cos^2 \theta = 1$ to eliminate $\sin \theta$ from the right side of your formula in part D. Verify that your new formula is correct by graphing and by substitution, as before.

- **F.** Repeat part E, but this time eliminate $\cos \theta$ on the right side to develop an equivalent expression in terms of $\sin \theta$.
- **G.** Repeat parts A to C to develop a double angle formula for tan 2θ .
- H. Make a list of all the double angle formulas you developed.

Reflecting

- I. How did you use compound angle formulas to develop double angle formulas?
- J. Why were you able to develop three different formulas for $\cos 2\theta$?
- **K.** How might you develop formulas for $\sin \frac{\theta}{2}$ and $\cos \frac{\theta}{2}$?

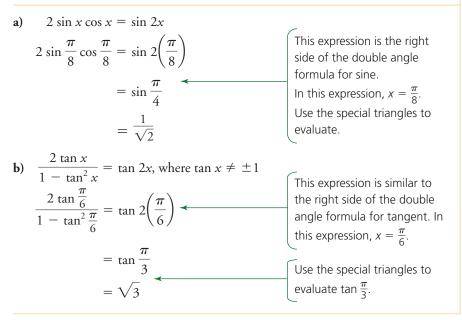
APPLY the Math



Simplify each of the following expressions and then evaluate.

a)
$$2\sin\frac{\pi}{8}\cos\frac{\pi}{8}$$
 b) $\frac{2\tan\frac{\pi}{6}}{1-\tan^2\frac{\pi}{6}}$

Solution

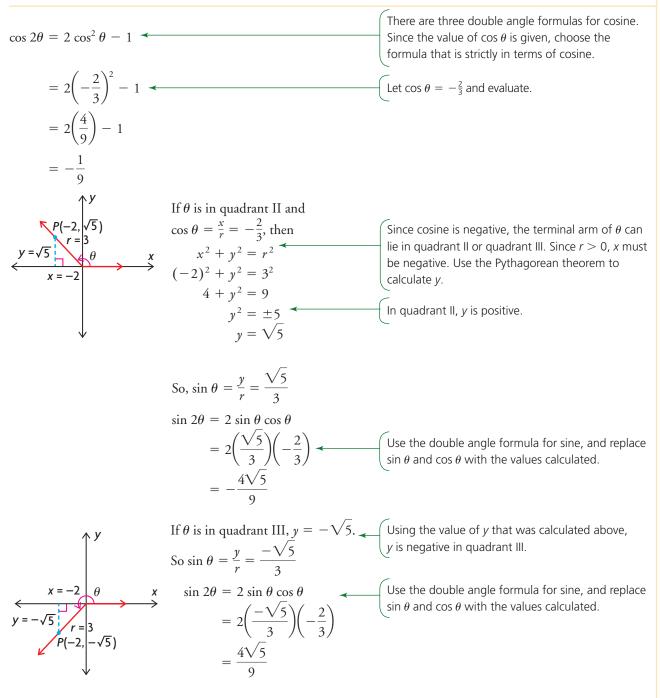


If you know one of the primary trigonometric ratios for any angle, then you can determine the other two. You can then determine the primary trigonometric ratios for this angle doubled.

EXAMPLE 2 Selecting a strategy to determine the value of trigonometric ratios for a double angle

If $\cos \theta = -\frac{2}{3}$ and $0 \le \theta \le 2\pi$, determine the value of $\cos 2\theta$ and $\sin 2\theta$.

Solution



EXAMPLE 3 Selecting a strategy to determine the primary trigonometric ratios for a double angle

Given $\tan \theta = -\frac{3}{4}$, where $\frac{3\pi}{2} \le \theta \le 2\pi$, calculate the value of $\cos 2\theta$.

Solution

$$\tan \theta = \frac{y}{x} = \frac{-3}{4}$$

$$x^{2} + y^{2} = r^{2}$$

$$4^{2} + (-3)^{2} = r^{2}$$

$$16 + 9 = r^{2}$$

$$\pm \sqrt{25} = r$$

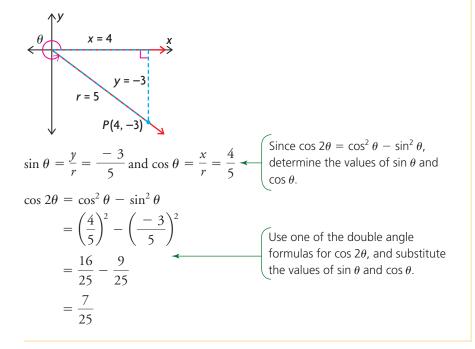
$$5 = r$$

$$\sin \theta = \frac{3\pi}{2} \le \theta \le 2\pi, \text{ the terminal arm of the angle lies in quadrant IV.}$$

$$\operatorname{Therefore, } x \text{ is positive and } y \text{ is negative. Use the Pythagorean theorem to determine } r.$$

$$\operatorname{Since } r \text{ is always positive, } r > 0.$$

Draw θ in standard position.



The double angle formulas can be used to create other equivalent trigonometric relationships.

Using reasoning to derive other formulas EXAMPLE 4 from the double angle formulas Develop a formula for $\sin \frac{x}{2}$. Solution Since $\cos x = \cos 2\left(\frac{x}{2}\right)$, replace x $\cos 2x = 1 - 2\sin^2 x$ with $\frac{x}{2}$ in the cosine double angle $\cos 2\left(\frac{x}{2}\right) = 1 - 2\sin^2\left(\frac{x}{2}\right)$ formula that only involves sine. Solve for sin $\left(\frac{x}{2}\right)$ as follows: $\cos x = 1 - 2\sin^2\left(\frac{x}{2}\right) \checkmark$ • Add 2 sin² $\left(\frac{x}{2}\right)$ to both sides. $2\sin^2\left(\frac{x}{2}\right) = 1 - \cos x$ • Subtract $\cos x$ from both sides. • Divide both sides by 2. $\sin^2\left(\frac{x}{2}\right) = \frac{1 - \cos x}{2}$ • Take the square root of both sides. $\sin\left(\frac{x}{2}\right) = \pm \sqrt{\frac{1 - \cos x}{2}}$

In Summary **Key Idea** • The double angle formulas show how the trigonometric ratios for a double angle, 2θ , are related to the trigonometric ratios for the original angle, θ . **Double Angle Formula for Sine Double Angle Formulas for Cosine** $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$ $\sin 2\theta = 2 \sin \theta \cos \theta$ $\cos 2\theta = 2\cos^2 \theta - 1$ $\cos 2\theta = 1 - 2 \sin^2 \theta$ **Double Angle Formula for Tangent** $\tan 2\theta = \frac{2\tan\theta}{1-\tan^2\theta}$ **Need to Know** • The double angle formulas can be derived from the appropriate compound angle formulas. • You can use the double angle formulas to simplify expressions and to calculate

- exact values.
- The double angle formulas can be used to develop other equivalent formulas.

CHECK Your Understanding

1. Express each of the following as a single trigonometric ratio.

a)	$2\sin 5x\cos 5x$	d)	$\frac{2 \tan 4x}{1 - \tan^2 4x}$
b)	$\cos^2\theta - \sin^2\theta$		$4\sin\theta\cos\theta$
c)	$1-2\sin^2 3x$	f)	$2\cos^2\frac{\theta}{2}-1$

2. Express each of the following as a single trigonometric ratio and then evaluate.

a)	$2 \sin 45^\circ \cos 45^\circ$	d)	$\cos^2\frac{\pi}{12} - \sin^2\frac{\pi}{12}$
b)	$\cos^2 30^\circ - \sin^2 30^\circ$	e)	$1-2\sin^2\frac{3\pi}{8}$
c)	$2\sin\frac{\pi}{12}\cos\frac{\pi}{12}$	f)	$2 \tan 60^\circ \cos^2 60^\circ$

3. Use a double angle formula to rewrite each trigonometric ratio.

a)	$\sin 4\theta$	d)	$\cos 6\theta$
b)	$\cos 3x$	e)	$\sin x$
c)	tan <i>x</i>	f)	tan 5 θ

PRACTISING

- **4.** Determine the values of sin 2θ , cos 2θ , and tan 2θ , given $\cos \theta = \frac{3}{5}$ and $0 \le \theta \le \frac{\pi}{2}$.
- 5. Determine the values of sin 2θ , cos 2θ , and tan 2θ , given $\tan \theta = -\frac{7}{24}$ and $\frac{\pi}{2} \le \theta \le \pi$.
- 6. Determine the values of $\sin 2\theta$, $\cos 2\theta$, and $\tan 2\theta$, given $\sin \theta = -\frac{12}{13}$ and $\frac{3\pi}{2} \le \theta \le 2\pi$.
- 7. Determine the values of sin 2θ , cos 2θ , and tan 2θ , given $\cos \theta = -\frac{4}{5}$ and $\frac{\pi}{2} \le \theta \le \pi$.
- **8**. Determine the value of *a* in the following equation:
- **A** $2 \tan x \tan 2x + 2a = 1 \tan 2x \tan^2 x$.
- **9.** Jim needs to find the sine of $\frac{\pi}{8}$. If he knows that $\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$, how can he use this fact to find the sine of $\frac{\pi}{8}$? What is his answer?
- **10.** Marion needs to find the cosine of $\frac{\pi}{12}$. If she knows that $\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$, how can she use this fact to find the cosine of $\frac{\pi}{12}$? What is her answer?

- a) Use a double angle formula to develop a formula for sin 4x in terms of x.
 - b) Use the formula you developed in part a) to verify that $\sin \frac{2\pi}{3} = \sin \frac{8\pi}{3}$.
- **12.** Use the appropriate compound angle formula and double angle formula to develop a formula for
 - a) $\sin 3\theta$ in terms of $\cos \theta$ and $\sin \theta$
 - **b**) $\cos 3\theta$ in terms of $\cos \theta$ and $\sin \theta$
 - c) $\tan 3\theta$ in terms of $\tan \theta$
- **13.** The angle x lies in the interval $\frac{\pi}{2} \le x \le \pi$, and $\sin^2 x = \frac{8}{9}$. Without using a calculator, determine the value of
 - a) $\sin 2x$ c) $\cos \frac{x}{2}$ b) $\cos 2x$ d) $\sin 3x$
- 14. Create a flow chart to show how you would evaluate sin 2*a*, given the value of sin *a*, if $a \in \left[\frac{\pi}{2}, \pi\right]$.
- **15.** Describe how you could use your knowledge of double angle formulas to sketch the graph of each function. Include a sketch with your description.
 - a) $f(x) = \sin x \cos x$ b) $f(x) = 2 \cos^2 x$

$$f(x) = 2 \cos x$$

c) $f(x) = \frac{\tan x}{1 - \tan^2 x}$

Extending

- **16.** Eliminate *A* from each pair of equations to find an equation that relates *x* to *y*.
 - a) $x = \tan 2A, y = \tan A$ b) $x = \cos 2A, y = \cos A$ c) $x = \cos 2A, y = \csc A$ d) $x = \sin 2A, y = \sec 4A$
- **17.** Solve each equation for values of x in the interval $0 \le x \le 2\pi$. **a)** $\cos 2x = \sin x$ **b)** $\sin 2x - 1 = \cos 2x$
- **18.** Express each of the following in terms of $\tan \theta$.

a)
$$\sin 2\theta$$

b) $\cos 2\theta$
c) $\frac{\sin 2\theta}{1 + \cos 2\theta}$
d) $\frac{1 - \cos 2\theta}{\sin 2\theta}$