FREQUENTLY ASKED Questions

Q: How can you identify equivalent trigonometric expressions?

A1: Compare the graphs of the corresponding trigonometric functions on a graphing calculator. If the graphs appear to be identical, then the expressions may be equivalent.

For example, to see if $\sin\left(x + \frac{\pi}{6}\right)$ is the same as $\cos\left(x - \frac{\pi}{3}\right)$, graph the functions $f(x) = \sin\left(x + \frac{\pi}{6}\right)$ and $g(x) = \cos\left(x - \frac{\pi}{3}\right)$ on the same screen. If you use a bold line for the second function, you will see it drawing in over the first graph.

Since the graphs appear to coincide, you can make the conjecture that f(x) = g(x). It follows that $\sin\left(x + \frac{\pi}{6}\right) = \cos\left(x - \frac{\pi}{3}\right)$. This can be confirmed by analyzing both functions. Both functions have a period of 2π . As well, $f(x) = \sin\left(x + \frac{\pi}{6}\right)$ is the sine function translated $\frac{\pi}{6}$ to the left, while $g(x) = \cos\left(x - \frac{\pi}{3}\right)$ is the cosine function translated $\frac{\pi}{3}$ to the right. These transformations of the parent functions result in the same function over their entire domains.

Study Aid

- See Lesson 7.1.
- Try Mid-Chapter Review Questions 1 and 2.

- A2: Use some of the following strategies:
 - the reflective property of even and odd functions
 - translations of a function by an amount that is equal to a multiple of its period
 - combinations of other transformations
 - the relationship between trigonometric ratios of complementary angles in a right triangle
 - the relationship between a principal angle in standard position on the Cartesian plane and its related angles
- **A3:** Use compound angle formulas.

For example, to identify a trigonometric expression that is equivalent

to
$$\cos\left(x - \frac{\pi}{4}\right)$$
, use the subtraction formula for cosine.
 $\cos\left(x - \frac{\pi}{4}\right) = \cos x \cos \frac{\pi}{4} + \sin x \sin \frac{\pi}{4}$
 $= (\cos x) \left(\frac{1}{\sqrt{2}}\right) + (\sin x) \left(\frac{1}{\sqrt{2}}\right)$
 $= \frac{1}{\sqrt{2}} (\cos x + \sin x)$

Study Aid

- See Lesson 7.2, Example 4.
- Try Mid-Chapter Review Questions 3 and 4.

Study Aid

- See Lesson 7.2, Example 1.
- Try Mid-Chapter Review
- Questions 5 and 6.

Study Aid

- See Lesson 7.3, Example 2.
- Try Mid-Chapter Review
- Questions 8 to 12.

- **Q:** How can you determine the exact values of trigonometric ratios for angles other than the special angles $\frac{\pi}{6}$, $\frac{\pi}{4}$, $\frac{\pi}{3}$, and $\frac{\pi}{2}$, and their multiples?
- A: You can combine special angles by adding or subtracting them, and then use compound angle formulas to determine trigonometric ratios for the new angle.

For example, consider
$$\frac{\pi}{4} + \frac{\pi}{3} = \frac{7\pi}{12}$$
.
Determine $\sin \frac{7\pi}{12}$ by finding
 $\sin \left(\frac{\pi}{4} + \frac{\pi}{3}\right) = \sin \frac{\pi}{4} \cos \frac{\pi}{3} + \cos \frac{\pi}{4} \sin \frac{\pi}{3}$
 $= \left(\frac{1}{\sqrt{2}}\right) \left(\frac{1}{2}\right) + \left(\frac{1}{\sqrt{2}}\right) \left(\frac{\sqrt{3}}{2}\right)$
 $= \frac{1 + \sqrt{3}}{2\sqrt{2}}$

- **Q**: Given a trigonometric ratio for θ , how would you calculate trigonometric ratios for 2θ ?
- **A:** You can use double angle formulas.

For example, if you know that $\cos \theta = \frac{2}{5}$, you can calculate $\cos 2\theta$ using the formula

$$\cos 2\theta = 2\cos^2 \theta - 1$$
$$= 2\left(\frac{2}{5}\right)^2 - 1$$
$$= \frac{8}{25} - 1$$
$$= -\frac{17}{25}$$

To calculate sin 2θ and tan 2θ , you need to consider the quadrant in which θ lies. If $\cos \theta$ is positive, θ can be in quadrant I or quadrant IV. This means you need to calculate two answers for both sin 2θ and tan 2θ .

PRACTICE Questions

Lesson 7.1

1. For each of the following trigonometric ratios, state an equivalent trigonometric ratio.

a)
$$\cos \frac{\pi}{16}$$

b) $\sin \frac{7\pi}{9}$
c) $\tan \frac{9\pi}{10}$
d) $-\cos \frac{2\pi}{5}$
e) $-\sin \frac{9\pi}{7}$
f) $\tan \frac{3\pi}{4}$

2. Use the sine function to write an equation that is equivalent to $y = -6 \cos\left(x + \frac{\pi}{2}\right) + 4$.

Lesson 7.2

3. Use a compound angle addition formula to determine a trigonometric expression that is equivalent to each of the following expressions.

a)
$$\cos\left(x + \frac{5\pi}{3}\right)$$
 c) $\tan\left(x + \frac{5\pi}{4}\right)$
b) $\sin\left(x + \frac{5\pi}{6}\right)$ d) $\cos\left(x + \frac{4\pi}{3}\right)$

4. Use a compound angle subtraction formula to determine a trigonometric expression that is equivalent to each of the following expressions.

a)
$$\sin\left(x - \frac{11\pi}{6}\right)$$
 c) $\cos\left(x - \frac{7\pi}{4}\right)$
b) $\tan\left(x - \frac{\pi}{3}\right)$ d) $\sin\left(x - \frac{2\pi}{3}\right)$

5. Evaluate each expression.

a)
$$\frac{\tan\frac{8\pi}{9} - \tan\frac{5\pi}{9}}{1 + \tan\frac{8\pi}{9}\tan\frac{5\pi}{9}}$$

b)
$$\sin\frac{299\pi}{298}\cos\frac{\pi}{298} - \cos\frac{299\pi}{298}\sin\frac{\pi}{298}$$

c)
$$\sin 50^{\circ}\cos 20^{\circ} - \cos 50^{\circ}\sin 20^{\circ}$$

d)
$$\sin\frac{3\pi}{8}\cos\frac{\pi}{8} + \cos\frac{3\pi}{8}\sin\frac{\pi}{8}$$

6. Simplify each expression.

a)
$$\frac{2 \tan x}{1 - \tan^2 x}$$

b)
$$\sin \frac{x}{5} \cos \frac{4x}{5} + \cos \frac{x}{5} \sin \frac{4x}{5}$$

c)
$$\cos \left(\frac{\pi}{2} - x\right)$$

d)
$$\sin \left(\frac{\pi}{2} + x\right)$$

e)
$$\cos \left(\frac{\pi}{4} + x\right) + \cos \left(\frac{\pi}{4} + x\right)$$

f)
$$\tan \left(x - \frac{\pi}{4}\right)$$

7. The expression $a \cos x + b \sin x$ can be expressed in the form $R \cos (x - \alpha)$, where $R = \sqrt{a^2 + b^2}$, $\cos \alpha = \frac{a}{R}$, and $\sin \alpha = \frac{b}{R}$. Use this information to write an expression that is equivalent to $\sqrt{3} \cos x - 3 \sin x$.

Lesson 7.3

- 8. Evaluate each expression.
 - a) $2\cos^2\frac{2\pi}{3} 1$ c) $\cos^2\frac{7\pi}{8} \sin^2\frac{7\pi}{8}$ b) $2\sin\frac{11\pi}{12}\cos\frac{11\pi}{12}$ d) $1 - 2\sin^2\left(\frac{\pi}{2}\right)$
- 9. The angle x lies in the interval π ≤ x ≤ 3π/2, and cos² x = 10/11. Without using a calculator, determine the value of each trigonometric ratio.
 a) sin x
 b) cos x
 c) sin 2x
 d) cos 2x
- **10.** Given $\sin x = \frac{3}{5}$ and $0 \le x \le \frac{\pi}{2}$, find $\sin 2x$ and $\cos 2x$.
- **11.** Given $\sin x = \frac{5}{13}$ and $0 \le x \le \frac{\pi}{2}$, find $\sin 2x$.
- **12.** Given $\cos x = -\frac{4}{5}$ and $\pi \le x \le \frac{3\pi}{2}$, find $\tan 2x$.