

Understanding the Richter Scale					
Richter Magnitude	Equivalent Kilograms of TNT	Extra Information			
0–1	0.6–20 kg of dynamite	We cannot feel these.			
2	600 kg of dynamite	Smallest quake people can normally feel.			
3	20 000 kg of dynamite	People near the epicentre feel this quake.			
4	60 000 kg of dynamite	This will cause damage around the epicentre. It is the same as a small fission bomb.			
5	20 000 000 kg of dynamite	Damage done to weak buildings in the area of the epicentre.			
6	60 000 000 kg of dynamite	Can cause great damage around the epicentre.			
7	20 billion kg of dynamite	Creates enough energy to heat New York City for one year. Can be detected all over the world. Causes serious damage.			
8	60 billion kg of dynamite	Causes death and major destruction. Destroyed San Francisco in 1906.			
9	20 trillion kg of dynamite	Rare, but would cause unbelievable damage!			

Chapter

Exponential and Logarithmic **Functions**

GOALS

You will be able to

- Relate logarithmic functions to exponential functions
- Describe the characteristics of logarithmic functions and their graphs
- Evaluate logarithms and simplify logarithmic expressions
- Solve exponential and logarithmic equations
- Use exponential and logarithmic functions to solve problems involving exponential growth and decay, and applications of logarithmic scales

? The Richter scale is used to measure earthquake intensity. What type of function do you think the Richter scale might be related to?

Getting Started

Study Aid

• For help, see the Review of Essential Skills found at the Nelson Advanced Functions website.

Question	Appendix
1, 2, 3	R-1
4, 8	R-7, R-8
6, 7	R-7

SKILLS AND CONCEPTS You Need

1. Rewrite each expression in an equivalent form, and then evaluate. **a)** 5^{-2} **b)** $36^{\frac{1}{2}}$ **c)** $36^{\frac{1}{2}}$ **c)** $-121^{\frac{1}{2}}$ **c)** $(8)^{-\frac{2}{3}}$

b)
$$11^0$$
 d) $125^{\frac{1}{3}}$ **f**) $\left(\frac{8}{27}\right)$

2. Simplify each expression, and then evaluate.

a)	$(3^5)(3^2)$	c)	$\frac{10^9}{10^6}$	e)	$(8^{\frac{1}{3}})^2$
b)	$(-2)^{12}(-2)^{-10}$	d)	$\frac{(7^6)(7^{-3})}{7^{-1}}$	f)	$\frac{(4^{\frac{3}{4}})(4^{\frac{1}{4}})}{4^{\frac{1}{2}}}$

- **3.** Simplify. **a)** $(2m)^3$ **c)** $(16x^6)^{\frac{1}{2}}$ **e)** $(-d^4) \left(\frac{c}{d}\right)^2$ **b)** $(a^4b^5)^{-2}$ **d)** $\frac{x^5y^2}{x^2y}$ **f)** $\left((x^3)^{-\frac{1}{3}}\right)^{-1}$
- **4.** Sketch a graph of each of the following exponential functions. State the domain, range, *y*-intercept, and the equation of the horizontal asymptote of each function. $(1)^{x}$

a)
$$y = 2^x$$
 b) $y = \left(\frac{1}{2}\right)$

$$y=3^{2x}-2$$

c)

a) Determine the equation of the inverse of each of the following functions.

i)	f(x)	= 3x -	6	iii)	f(x)	=	$6x^3$			
ii)	f(x)	$= x^2 -$	5	iv)	f(x)	=	(x - x)	4) ² -	+ 3	3

- b) Which of the inverses you found in part a) are also functions?
- 6. A bacteria culture doubles every 4 h. If there are 100 bacteria in the culture initially, determine how many bacteria there will be after
 - a) 12 h
 c) 3.5 days

 b) 1 day
 d) 1 week
- **7.** The population of a town is declining at a rate of 1.2% per year. If the population was 15 000 in 2005, what will the population be in 2020?
- 8. Use a table like this to compare the graphs of $y = 3(2^x)$ and $y = 3(\frac{1}{2})^x$.

Similarities	Differences		

Getting Started

APPLYING What You Know

Underwater Light Intensity

For every metre below the surface of the ocean, the light intensity at the surface is reduced by 2.4%. A particular underwater camera requires at least 40% of the light at the surface of the ocean to operate.

What is the maximum depth at which the camera can successfully take photographs underwater?

- A. Explain why the function $P = 100(0.976)^m$ gives the percent of light remaining at a depth of *m* metres below the surface of the ocean.
- **B.** Graph *P* as a function of *m*.
- **C.** Determine a reasonable domain and range for this function. What restrictions might have to be placed on the domain and range?
- **D.** Determine the light intensity at a depth of 12 m.
- **E.** At what depth is the light intensity reduced to 40% of the intensity at the surface of the ocean? Explain how you determined your answer.
- F. The water in the western end of Lake Ontario is murky, and the light intensity is reduced by 3.6%/m. Write the function that represents the percent, *P*, of light remaining at a depth of *m* metres below the surface.
- **G.** Graph the function you created in part F.
- **H.** Compare this graph with your graph in part B. How are the graphs alike? How are they different?
- I. What is the maximum depth at which the camera could take photographs in the murky water of Lake Ontario?