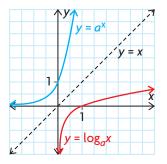
FREQUENTLY ASKED Questions

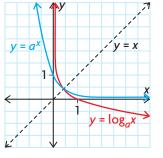
- **Q:** In what ways can the equation of the inverse of an exponential function be written?
- A: One way that the inverse of an exponential function can be written is in exponential form. For example, the inverse of the exponential function $y = a^x$ is $x = a^y$. Another way that the inverse can be written is in logarithmic form. For example, $x = a^y$ can be written as $y = \log_a x$. This means that a logarithm is an exponent. Specifically, $\log_a x$ means "the exponent that must be applied to *a* to get *x*." Since $x = a^y$ is equivalent to $y = \log_a x$, this exponent is *y*.

Q: What does the graph of a logarithmic function of the form y = log_ax look like and what are its characteristics?

- **A:** The general shape of the graph of a logarithmic function depends on the value of its base.
 - When a > 1, the exponential function is an increasing function, and the logarithmic function is also an increasing function.

When 0 < a < 1, the exponential function is a decreasing function, and the logarithmic function is also a decreasing function.





- The *y*-axis is the vertical asymptote for the logarithmic function. The *x*-axis is the horizontal asymptote for the exponential function.
- The *x*-intercept of the logarithmic function is 1, while the *y*-intercept of the exponential function is 1.
- The domain of the logarithmic function is {x ∈ R | x > 0}, since the range of the exponential function is {y ∈ R | y > 0}.
- The range of the logarithmic function is {y ∈ R}, since the domain of the exponential function is {x ∈ R}.

Study Aid

- See Lesson 8.1.
- Try Mid-Chapter Review Questions 1 and 2.

Study Aid

- See Lesson 8.2, Examples 1 and 2.
- Try Mid-Chapter Review Questions 3 and 4.

Study Aid

- See Lesson 8.3, Examples 2 and 3.
- Try Mid-Chapter Review Questions 7, 8, and 9.

Study Aid

- See Lesson 8.4, Examples 4, 5, and 6.
- Try Mid-Chapter Review
- Questions 10 to 13.

Q: How does varying the parameters of the equation $y = a \log(k(x - d)) + c$ affect the graph of the parent function, $y = \log x$?

A: The value of the parameter *a* determines whether there is a vertical stretch or compression. The value of *k* determines whether there is a horizontal stretch or compression. The value of *d* indicates a horizontal translation, and the value of *c* indicates a vertical translation. If *a* is negative, there is a reflection of the parent function $y = \log x$ in the *x*-axis. If *k* is negative, there is a reflection of the parent function $y = \log x$ in the *y*-axis.

Q: How do you evaluate a logarithm?

A1: A logarithm of a number indicates the exponent to which the base must be raised to get the number.

For example, $\log_4 64$ means "the exponent to which you must raise 4 to get 64." The answer is 3.

- **A2:** If the logarithm involves base 10, a calculator can be used to determine its value; $\log_{10}25 = \log 25 = 1.3979$.
- **A3:** If the logarithm has a base other than 10, use the relationship

$$\log_a b = \frac{\log b}{\log a}$$
 and a calculator to determine its value;
 $\log_2 15 = \frac{\log 15}{\log 2} \doteq 3.9069.$

Q: How do you simplify expressions that contain logarithms?

A: If the logarithms are written with the same base, you can simplify them using the laws of logarithms that correspond to the relevant exponent laws.

The log of a product can be expressed as a sum of the logs; for example, $\log_5(6 \times 7) = \log_5 6 + \log_5 7$.

The log of a quotient can be expressed as the difference of the logs; for example, $\log_7\left(\frac{25}{6}\right) = \log_7 25 - \log_7 6$.

The logarithm of a power can be expressed as the product of the exponent of the power and the logarithm of the base of the power; for example, $\log_3 4^6 = 6 \log_3 4$.

PRACTICE Questions

Lesson 8.1

1. Express in logarithmic form. a) $y = 5^x$ c) $r = 10^y$

b)
$$y = \begin{pmatrix} 1 \\ 3 \end{pmatrix}^{x}$$
 c) $x = 10^{4}$
d) $m = p^{4}$

- **2**. Express in exponential form.
 - **a**) $y = \log_3 x$ **c**) $k = \log m$

b)
$$y = \log x$$
 d) $t = \log_s r$

Lesson 8.2

- 3. Describe the transformations of the parent function $y = \log x$ that result in f(x).
 - a) $f(x) = 2 \log x 4$
 - **b**) $f(x) = -\log 3x$

c)
$$f(x) = \frac{1}{4} \log \frac{1}{4}x$$

- d) $f(x) = \log[2(x-2)]$
- e) $f(x) = \log(x+5) + 1$
- f) $f(x) = 5 \log(-x) 3$
- Given the parent function y = log₃x, write the equation of the function that results from each set of transformations.
 - a) vertical stretch by a factor of 4, followed by a reflection in the *x*-axis
 - **b**) horizontal translation 3 units to the left, followed by a vertical translation 1 unit up
 - c) vertical compression by a factor of $\frac{2}{3}$, followed by a horizontal stretch by a factor of 2
 - d) vertical stretch by a factor of 3, followed by a reflection in the *y*-axis and a horizontal translation 1 unit to the right
- State the coordinates of the image point of (9, 2) for each of the transformed functions in question 4.
- 6. How does the graph of $f(x) = 2 \log_2 x + 2$ compare with the graph of $g(x) = \log_2 x$?

Lesson 8.3

7.

Evaluate.					
a)	log ₃ 81	c)	log ₅ 1		
b)	$\log_4 \frac{1}{16}$	d)	$\log_{\frac{2}{3}}\frac{27}{8}$		

- 8. Evaluate to three decimal places.
 a) log 4
 c) log 135

a)	log 4	c)	log 135
b)	log 45	d)	log 300

- **9.** Evaluate the value of each expression to three decimal places.
 - **a**) $\log_2 21$ **c**) $\log_7 141$
 - **b**) $\log_5 117$ **d**) $\log_{11} 356$

Lesson 8.4

- **10.** Express as a single logarithm.
 - a) $\log 7 + \log 4$ c) $\log_3 11 + \log_3 4 \log_3 6$
 - **b**) $\log 5 \log 2$ **d**) $\log_p q + \log_p q$
- **11.** Evaluate.
 - a) $\log_{11}33 \log_{11}3$
 - **b**) $\log_7 14 + \log_7 3.5$
 - c) $\log_5 100 + \log_5 \frac{1}{4}$
 - d) $\log_{\frac{1}{2}}72 \log_{\frac{1}{2}}9$
 - e) $\log_4 \sqrt[3]{16}$
 - f) $\log_3 9\sqrt{27}$
- 12. Describe how the graph of $f(x) = \log x^3$ is related to the graph of $g(x) = \log x$.
- **13.** Use a calculator to evaluate each expression to two decimal places.

a)	log 4 ⁸	d)	$\log 200 \div \log 50$
b)	$\log\sqrt{40}$	e)	$(\log 20)^2$
c)	log 9 ⁴	f)	5 log 5