

Chapter

9

Combinations of Functions

GOALS

You will be able to

- Consolidate your understanding of the characteristics of functions
- Create new functions by adding, subtracting, multiplying, and dividing functions
- Investigate the creation of composite functions numerically, graphically, and algebraically
- Determine key characteristics of these new functions
- Solve problems using a variety of function models

Epidemiology is the scientific study of contagious diseases. A combination of functions is often used to model the way that a contagious disease spreads through a population. What types of functions could be combined to create an algebraic model that represents the graph shown?

Getting Started

SKILLS AND CONCEPTS You Need

Study Aid

• For help, see the Review of Essential Skills found at the Nelson Advanced Functions website.

Question	Appendix
3	R-8

1. Evaluate each of the following functions for f(-1) and f(4). Round your answers to two decimal places, if necessary.

a)
$$f(x) = x^3 - 3x^2 - 10x + 24$$

b) $f(x) = \frac{4x}{1-x}$
c) $f(x) = 3 \log_{10}(x)$
d) $f(x) = -5(0.5^{(x-1)})$

- **2.** Identify the following characteristics of functions for the graph displayed.
 - domain and range
 end behaviour
 - equations of asymptotes
 - interval(s) where the function is increasing

maximum or minimum values

•

- interval(s) where the function is decreasing
- **3.** For each parent function, apply the given transformation(s) and write the equation of the new function.
 - a) y = |x|; vertical stretch by a factor of 2, shift 3 units to the right
 - b) $y = \cos(x)$; reflection in the *x*-axis, horizontal compression by a factor of $\frac{1}{2}$
 - c) $y = \log_3 x$; reflection in the *y*-axis, shift 4 units left and 1 unit down
 - d) $y = \frac{1}{x}$; vertical stretch by a factor of 4, reflection in the *x*-axis, shift 5 units down
- **4.** Solve each equation for $x, x \in \mathbf{R}$. State any restrictions on x, as required.
 - a) $2x^3 7x^2 5x + 4 = 0$ d) $10^{-4x} 22 = 978$
 - b) $\frac{2x+3}{x+3} + \frac{1}{2} = \frac{x+1}{x-1}$ e) $5^{x+3} 5^x = 0.992$
 - c) $\log x + \log (x 3) = 1$ f) $2 \cos^2 x = \sin x + 1, 0 \le x \le 2\pi$
- 5. Solve each inequality for $x, x \in \mathbf{R}$. a) $x^3 - x^2 - 14x + 24 < 0$ b) $\frac{(2x - 3)(x - 4)}{(x + 2)} \ge 0$
- 6. Identify each function as even, odd, or neither. a) $f(x) = 2\sin(x - \pi)$ c) $f(x) = 4x^4 - 3x^2$
 - **b)** $f(x) = \frac{3}{4-x}$ **d)** $f(x) = 2^{3x-1}$
- **7.** Classify the types of functions you have studied (polynomial, rational, exponential, logarithmic, and trigonometric) as continuous or not.

Getting Started

APPLYING What You Know

Building a Sandbox

Duncan is planning to build a rectangular sandbox in his backyard for his son to play in during the summer. He has designed the sandbox so that it will have an open top and a volume of 2 m³. The length of the base will measure four times the height of the sandbox. The wood for the base will cost $\frac{5}{m^2}$, and the wood for the sides will cost $\frac{4}{m^2}$.

What dimensions should Duncan use to minimize the cost of the sandbox he has designed?

- A. Let h represent the height (in metres) and let w represent the width of the sandbox. Determine an expression for the width of the sandbox in terms of its height.
- **B.** Write an expression for the cost of the wood for the base of the sandbox in terms of its height.
- **C.** Express the cost of the wood for the two longer sides in terms of the height. Is the cost for the two shorter sides the same?
- **D.** Let C(h) represent the total cost of the wood for the sandbox as a function of its height. Determine the equation for C(h).
- **E.** What types of functions are added in your equation for C(h)?
- **F.** What would be a reasonable domain and range for this cost function? Explain.
- **G.** Using graphing technology, graph the cost function using window settings that correspond to its domain and range.
- H. Determine the height of the sandbox that will minimize the total cost.
- I. What dimensions would you recommend that Duncan use to build the sandbox? Justify your answer.