FREQUENTLY ASKED Questions

- **Q:** If you are given the graphs of two functions, f and g, how can you determine the location of a point that would appear on the graphs of f + g, f g, $f \times g$, and $f \div g$?
- A: For any particular x-value, determine the y-value on each graph, separately. For f + g, add these two y-values together. For f g, subtract the y-value of g from the y-value of f. For $f \times g$, multiply these two y-values together. For $f \div g$, divide the y-value of f by the y-value of g. Each of these points has, as its coordinates, the same x-value and the new y-value.
- **Q:** If you are given the equations of two functions, f and g, how can you determine the equations of the functions f + g, f g, $f \times g$, and $f \div g$?
- A: Every time you combine two functions in one of these ways, you are simply performing a different arithmetic operation on every pair of *y*-values, one from each of the functions being combined, provided that the *x*-values are the same. Since the equation of each function defines the *y*-values of each function, the new equation can be determined by adding, subtracting, multiplying, or dividing the *y*-value expressions as required.

For example, if $f(x) = x^2 + 8$ and $g(x) = 5^x$, then

$$(f + g)(x) = f(x) + g(x) \qquad (f \times g)(x) = f(x) \times g(x)$$
$$= x^{2} + 8 + 5^{x} \qquad = (x^{2} + 8)(5^{x})$$
$$(f - g)(x) = f(x) - g(x) \qquad (f \div g)(x) = f(x) \div g(x)$$
$$= x^{2} + 8 - 5^{x} \qquad = \frac{x^{2} + 8}{5^{x}}$$

Q: How can you determine the domain of the combined functions f + g, f - g, $f \times g$, and $f \div g$?

A: Since you can only combine points from two functions when they share the same *x*-value, the domain of the combined function must consist of the set of *x*-values where the domains of the two given functions intersect. The only exception occurs when you are dividing two functions. The function $f \div g$ is not defined when its denominator is equal to zero, since division by zero is undefined. As a result, *x*-values that cause g(x) to equal zero must be excluded from the domain.

Study Aid

- See Lessons 9.1 to 9.4.
- Try Mid-Chapter Review Question 2.

Study Aid

- See Lessons 9.1 to 9.4.
- Try Mid-Chapter Review
- Questions 5 and 7.

Study Aid

- See Lessons 9.1 to 9.4.
- Try Mid-Chapter Review
 - Questions 5 and 7.

PRACTICE Questions

Lesson 9.1

1. Given the functions $f(x) = \cos x$ and $g(x) = \sin x$, which operations can be used to combine the two functions to create a new function with an amplitude that is less than 1?

Lesson 9.2

- **2.** Let $f(x) = \{(-9, -2), (-6, -3), (-3, 0),$ (0, 2), (3, 7) and $g(x) = \{(-12, 9),$ (-9, 4), (-8, 1), (-7, 10), (-6, -6),(0, 12)}. Determine
 - a) (f+g)(x)b) (g+f)(x)c) (f-g)(x)d) (g-f)(x)
- 3. The cost, in thousands of dollars, for a company to produce x thousand of its product is given by the function C(x) = 10x + 30. The revenue from the sales of the product is given by the function $R(x) = -5x^2 + 150x$.
 - a) company's profit on sales of x thousand of its product.
 - where $0 \le x \le 40$.
 - **c**) of 7500 of its product?
- **4.** Steve earns \$24.39/h operating an industrial plasma torch at a rail-car manufacturing plant. He receives \$0.58/h more for working the night shift, as well as \$0.39/h more for working weekends.
 - a) Write a function that describes Steve's daily earnings under regular pay.
 - What function shows his daily earnings b) under the night-shift premium?
 - c) What function shows his daily earnings under the weekend premium?
 - d) What function represents his earnings for the night shift on Saturday?
 - e) How much does Steve earn for working 11 h on Saturday night, if he earns time and a half on that day's rate for more than 8 h of work?

- Write the function that represents the
- **b**) Graph the cost, revenue, and profit functions on the same coordinate grid,
- What is the company's profit on the sale

$C(h) = -30 \cos\left(\frac{\pi}{6}h\right) + 34$, where h is the number of hours after the 6 a.m. opening time. The average amount of money, in dollars, that

Lesson 9.3

domain.

each customer in the diner will spend can be modelled by the function

5. Determine $(f \times g)(x)$ for each of the following pairs of functions, and state its

a) $f(x) = x + \frac{1}{2}, g(x) = x + \frac{1}{2}$

c) $f(x) = 11x^3, g(x) = \frac{2}{x+5}$

b) $f(x) = \sqrt{x - 10}, g(x) = \sin(3x)$

d) f(x) = 90x - 1, g(x) = 90x + 1

time can be modelled by the function

6. A diner is open from 6 a.m. to 6 p.m., and the average number of customers in the diner at any

 $D(h) = -3\sin\left(\frac{\pi}{6}h\right) + 7.$

- a) Write the function that represents the diner's average revenue from the customers.
- Graph the function you wrote in part a). b)
- What is the average revenue from the **c**) customers in the diner at 2 p.m.?

Lesson 9.4

- 7. Calculate $(f \div g)(x)$ for each of the following pairs of functions, and state its domain.
 - a) f(x) = 240, g(x) = 3x
 - **b**) $f(x) = 10x^2, g(x) = x^3 3x$
 - c) $f(x) = x + 8, g(x) = \sqrt{x 8}$

d)
$$f(x) = 14x^2, g(x) = 2 \log x$$

8. Recall that $y = \tan x \operatorname{can} be written as the$ quotient of two functions: $f(x) = \sin x$ and $g(x) = \cos x$. List as many other trigonometric functions as possible that could be written as the quotient of two functions.

544 **Mid-Chapter Review**