Chapter Self-Test

- 1. A sphere has radius r.
 - a) Write a function for the sphere's surface area in terms of *r*.
 - **b**) Write a function for the radius in terms of the volume, *V*.
 - c) Determine A(r(V)).
 - d) A mother wrapped a ball in wrapping paper and gave it to her son on his birthday. The volume of the ball was 0.75 m³. Assuming that she used the minimum amount of wrapping paper possible to cover the ball, how much wrapping paper did she use?
- **2.** Solve $x \sin x \ge x^2 1$. Use any strategy.
- **3.** Let $f(x) = (2x + 3)^7$. Find at least two different pairs of functions, g(x) and h(x), such that $f(x) = (g \circ h)(x)$.
- 4. In the table at the left, N(n) is the number, in thousands, of Canadian home computers sold, where n is the number of years since 1990.
 - a) Determine the equation that best models this relationship.
 - **b**) How many home computers were sold in June 1993?
- 5. The graph of the function f(x) is a line passing through the point (2, -3) with a slope of 6. The graph of the function g(x) is the graph of the function $h(x) = x^2$ vertically stretched by a factor of 5, horizontally translated 8 units to the left, and vertically translated 1 unit down. Find $(f \times g)(x)$.
- 6. The height of a species of dwarf evergreen tree, in centimetres, as a function of time, in months, can be modelled by the logistic function $h(t) = \frac{275}{1 + 26(0.85)^t}$.
 - a) If this function is graphed, are there any asymptotes? If so, name each asymptote and describe what it means.
 - b) Determine when this tree will reach a height of 150 cm.
- 7. The cost, in dollars, to produce a product can be modelled by the function C(x) = 5x + 18, where x is the number of the product produced, in thousands. The revenue generated by producing and selling x units of this product can be modelled by the function $R(x) = 2x^2$. How much of the product must the company produce in order to break even?
- 8. Solve $\frac{\cot x}{x} = x^3 + 3$. Use any strategy. Round your answer(s) to the nearest tenth, if necessary.
- 9. Given $f(x) = \sin x$ and $g(x) = \cos x$, which of the following operations make it possible to combine the two functions into one function that is not sinusoidal: addition, subtraction, multiplication, or division?

n	N(n)
0	400
2	520
4	752
6	1144
8	1744
10	2600
15	6175