

| Year | Ontario's CO <sub>2</sub> Emissions (kilotonnes/year) |
|------|-------------------------------------------------------|
| 1995 | 175 000                                               |
| 1996 | 182 000                                               |
| 1997 | 186 000                                               |
| 1998 | 187 000                                               |
| 1999 | 191 000                                               |
| 2000 | 201 000                                               |
| 2001 | 193 000                                               |
| 2002 | 199 000                                               |
| 2003 | 203 000                                               |
| 2004 | 199 000                                               |
| 2005 | 201 000                                               |
|      |                                                       |

 $CO_2$  emissions are measured in kilotonnes (kt); 1 kt = 1000 tonnes (t) and 1 t = 1000 kg.



Optimistic Model of CO<sub>2</sub> Emissions in Ontario

2005

Year

2010

2000

1995

210 000

200 000

190 000

180 000

170 000

160 000

7 150 000 O

Emissions (kilotonnes/year)

## Chapter

# Quadratic Equations

### **GOALS**

### You will be able to

- Solve quadratic equations graphically, by factoring, and by using the quadratic
- by completing the square
- and vertex forms

Solve and model problems involving

Recent attention to the environment has raised awareness about the effects of carbon dioxide in the atmosphere. Many countries are developing strategies to reduce their CO<sub>2</sub> emissions.

> How can you use a quadratic model to predict when Ontario's CO<sub>2</sub> emissions might drop below 1995 levels?