

Study | Aid

and 5.3.

WORDS YOU NEED to Know

- 1. State the vertex, equation of the axis of symmetry, and zeros of the parabola at the left.
- **2.** Match each form with the correct equation.
 - a) standard form
- i) y = -2(x+3)(x-1)
- **b)** factored form
- ii) $y = -2(x+1)^2 + 8$
- **c)** vertex form
- iii) $y = -2x^2 4x + 6$

SKILLS AND CONCEPTS You Need

Graphing Quadratic Relations

Different strategies can be used to graph a quadratic relation. The strategy you use might depend on the form of the relation.

• For more help and practice, see Lessons 5.6, 3.3, **EXAMPLE**

Describe a strategy you could use to graph each quadratic relation.

a)
$$y = x^2 + 4x - 1$$

b)
$$y = -2(x+3)(x-5)$$
 c) $y = 2(x-3)^2 - 4$

c)
$$y = 2(x-3)^2 - 4$$

Solution

- The equation is in standard form.
 - Partially factor the equation to locate two ordered pairs with the same γ -coordinate.
 - Determine the *x*-coordinate of the vertex by calculating the mean of the *x*-coordinates of the points you determined above.
 - Substitute the *x*-coordinate of the vertex into the equation to determine the *y*-coordinate of the vertex.
 - Substitute two other values of *x* into the equation to determine two more points on the parabola.
 - Use symmetry to determine the points on the parabola that are directly across from the two additional points you determined.
 - Plot the vertex and points, then sketch the parabola.
- **b)** The equation is in factored form.
 - Locate the zeros by setting each factor to zero and solving each equation.
 - Determine the *x*-coordinate of the vertex by calculating the mean of the x-coordinates of the zeros that you determined above.
 - Substitute the *x*-coordinate of the vertex into the equation to determine the *y*-coordinate of the vertex.
 - Plot the vertex and zeros, then sketch the parabola.

- **c)** The equation is in vertex form.
 - Locate the vertex and the axis of symmetry.
 - Determine the *y*-intercept by letting *x* equal 0.
 - Use symmetry to determine the point on the parabola that is directly across from the γ -intercept.
 - Plot the vertex and points, then sketch the parabola.
 - **3.** Graph each quadratic relation.

a)
$$y = (x + 4)^2 - 3$$

c)
$$y = (x + 5)(x - 7)$$
 e) $y = 2x^2 + x - 1$

e)
$$y = 2x^2 + x - 1$$

b)
$$y = -3(x-3)^2 - 1$$

b)
$$y = -3(x-3)^2 - 1$$
 d) $y = \frac{1}{2}(x-4)(x-7)$ **f)** $y = -3x^2 - 5x$

$$\mathbf{f)} \ \ y = -3x^2 - 5x$$

Study | Aid

For more help and practice,

see Lessons 4.2 to 4.6.

Factoring Quadratic Expressions

You can use a variety of strategies to factor a quadratic expression.

EXAMPLE

Factor. Use an area diagram for part a). Use decomposition for part b).

a)
$$x^2 - 7x - 18$$

b)
$$4x^2 + 8x - 5$$

Solution

a)
$$x^2 - 7x - 18$$

This is a trinomial where a = 1 and there are no common factors. Look for two binomials that each start with x. To determine the factors, find two numbers whose product is -18 and whose sum is -7. The numbers are -9 and 2.

$$x^2 - 7x - 18 = (x - 9)(x + 2)$$

b)
$$4x^2 + 8x - 5$$
 = $4x^2 - 2x + 10x - 5$

This is a trinomial where $a \neq 1$ and there are no common factors. Look for two numbers whose sum is 8 and whose product is (4)(-5) = -20. The numbers are -2 and 10. Use these to decompose the middle term.

$$= \underbrace{4x^2 - 2x}_{= 2x(2x - 1)} + \underbrace{10x - 5}_{+ 5(2x - 1)}$$

Group the terms in pairs, and divide out the common factors.

= (2x - 1)(2x + 5)

Divide out the common binomial as a common factor.

4. Factor each expression, if possible.

a)
$$x^2 + 8x + 12$$

c)
$$x^2 + 7x - 30$$

c)
$$x^2 + 7x - 30$$

d) $9x^2 - 30x + 25$
e) $-6x^2 - 7x + 24$
f) $2x^2 - x - 5$

b)
$$x^2 - 5x + 6$$

NEL

d)
$$9x^2 - 30x + 25$$

f)
$$2x^2 - x - 5$$

Study | Aid

• For help, see the Review of Essential Skills and Knowledge Appendix.

Question	Appendix	
5	A-9	

	Х	Х	-1	
х	x ²	<i>x</i> ²	- x	
-1	-х	х	1	
-1	— х	— х	1	
-1	— х	— х	1	

PRACTICE

5. Solve each equation.

a)
$$4x + 8 = 0$$

c)
$$-2x + 12 = 0$$

b)
$$5x - 3 = 0$$

d)
$$12x + 7 = 0$$

6. Expand and simplify.

a)
$$(3x - 5)(x -$$

a)
$$(3x-5)(x-4)$$
 c) $(2x+3)(4x-5)$ e) $(3a+7)(3a+7)$

e)
$$(3a + 7)(3a + 7)$$

b)
$$(n+1)(n-1)$$

b)
$$(n+1)(n-1)$$
 d) $(7-3p)(2p+5)$ **f)** $(6x-5)^2$

f)
$$(6x - 5)^2$$

7. The algebra tiles at the left show $2x^2 - 7x + 3$ and its factors. Determine the factors for each expression. Use algebra tiles or area diagrams, if you wish.

a)
$$x^2 + 4x + 3$$

a)
$$x^2 + 4x + 3$$
 c) $3x^2 - 5x - 2$ e) $2x^2 + 12x$
b) $x^2 - 8x + 16$ d) $4x^2 - 9$ f) $9x^2 - 6x + 1$

e)
$$2x^2 + 12x$$

b)
$$x^2 - 8x + 16$$

d)
$$4x^2 - 9$$

f)
$$9x^2 - 6x + 1$$

8. For each quadratic relation, determine the zeros, the y-intercept, the equation of the axis of symmetry, the vertex, and the equation in standard form.

9. For each quadratic relation, determine the y-intercept, the equation of the axis of symmetry, and the vertex.

a)
$$y = (x - 4)(x + 6)$$

b)
$$y = -4(x - 3)^2 - 5$$

- 10. Do you agree or disagree with each statement? Provide examples to support your answers.
 - a) Every quadratic expression can be written as the product of two linear factors.
 - **b)** Every quadratic relation has a maximum value or a minimum value.
 - **c)** The graph of a quadratic relation always has two *x*-intercepts.

APPLYING What You Know

YOU WILL NEED

- grid paper
- ruler

The Jewel Box

This building is called the Jewel Box. It is a large greenhouse in St. Louis, Missouri. Its design is based on a parabola that passes through the corners of the roof line.

What quadratic relations can be used to model this parabola?

- **A.** Trace the parabola from the photo at the right onto grid paper. Decide where to draw the *x* and *y*-axes.
- **B.** Create an algebraic model for the parabola in vertex form.
- **C.** Create an algebraic model for the parabola in factored form.
- **D.** How are the two models you created for parts B and C the same? How are they different?
- **E.** Write both of your models in standard form. Do all three models represent the same parabola? Explain.
- **F.** Which form of the quadratic relation do you prefer to model the shape of the roof line of the Jewel Box? Justify your answer.

NEL Chapter 6 313