Exploring the Creation of Perfect Squares

YOU WILL NEED

• algebra tiles

GOAL

Recognize the relationship between the coefficients and constants of perfect-square trinomials.

EXPLORE the Math

Quadratic expressions like $x^2 + 8x + 16$ and $4x^2 + 8x + 4$ are perfect-square trinomials. Quadratic expressions like $4x^2 + 8x + 3$ are not.

? How can you decide what value for c makes expressions of the form $ax^2 + abx + c$, $a \neq 0$, perfect-square trinomials?

- **A.** Factor $x^2 + 8x + 16$ and $4x^2 + 8x + 4$ completely. Explain why these expressions are called perfect-square trinomials.
- **B.** Using algebra tiles, create an arrangement that helps you determine the constant term *c* that must be added to create perfect-square trinomials. Verify by factoring each new trinomial you created.

i) $x^2 + 2x + c$ iii) $x^2 + 6x + c$ v) $x^2 + 10x + c$ ii) $x^2 + 4x + c$ iv) $x^2 + 8x + c$ vi) $x^2 + 12x + c$

- **C.** For each trinomial you created in part B, compare the coefficient of *x* and the constant term you added. Explain how these numbers are related.
- **D.** How are the expressions below different from those in part B? i) $x^2 - 4x + c$ iii) $x^2 - 6x + c$ v) $x^2 - 2x + c$ ii) $x^2 - 8x + c$ iv) $x^2 - 12x + c$ vi) $x^2 - 10x + c$
- **E.** Using algebra tiles or an area diagram, determine the constant term *c* that must be added to each of the expressions in part D to create perfect-square trinomials. Verify by factoring each new trinomial.

- F. For each trinomial you created for part E, compare the coefficient of x and the constant term you added. Does the relationship you discovered in part C still apply?
- **G.** Each expression below contains a common factor. Factor the expression and then determine the constant term *c* that must be added to each expression to make it a multiple of a perfect-square trinomial. Verify by factoring each new trinomial.

i) $2x^2 + 4x + c$ iii) $3x^2 - 6x + c$ iii) $5x^2 + 25x + c$ iii) $3x^2 - 12x + c$ iv) $-x^2 + 4x + c$ vi) $6x^2 + 54x + c$

Reflecting

- **H.** How can you predict the value of *c* that will make $x^2 + bx + c$ a perfect-square trinomial?
- I. How can you predict the value of *c* that will make $ax^2 + abx + c$ a perfect-square trinomial?

In Summary

Key Idea

• If $(x + b)^2 = x^2 + 2bx + b^2$, then $\left(x + \frac{b}{2}\right)^2 = x^2 + bx + \left(\frac{b}{2}\right)^2$. So,

in all perfect-square trinomials, the constant term is half the coefficient of the x term squared.

Need to Know

- To create a perfect square that includes $x^2 + bx$ and no other terms with a variable, add $\left(\frac{b}{2}\right)^2$.
- To create a perfect square that includes $ax^2 + abx$ and no other terms with a variable, factor out *a* and then create a perfect square that

includes $x^2 + bx$. This results in adding $a\left(\frac{D}{2}\right)^2$.

FURTHER Your Understanding

- **1.** Determine the value of *c* that will create a perfect-square trinomial. Verify by factoring the trinomial you created.
 - a) $x^{2} + 8x + c$ b) $x^{2} - 14x + c$ c) $x^{2} + 40x + c$ d) $x^{2} + 20x + c$ f) $x^{2} - 5x + c$
- **2.** Each expression is a multiple of a perfect-square trinomial. Determine the value of *c*.
 - a) $3x^2 + 30x + c$ c) $-4x^2 8x + c$ e) $5x^2 10x + c$ b) $2x^2 - 12x + c$ d) $6x^2 - 60x + c$ f) $7x^2 + 42x + c$